1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter16:Engine Testing and Performance"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.1 page no: 519"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"N=3000 #The speed of the engine in rpm \n",
"r=9 #Compression ratio \n",
"l=17.2 #The length of the connecting rod in cm\n",
"t=20 #The combustion ends at a TDC in degrees\n",
"k=3 #Three litre spark engine\n",
"n=6.0 #V-6 Engine\n",
"\n",
"#Calculations\n",
"import math\n",
"Vs=(k/n)*10**-3\n",
"d=(((Vs*4)/math.pi)**(1/3.0))\n",
"L=d*100\n",
"up=2*d*N/60.0\n",
"Vc=(Vs/(r-1))*10**6\n",
"cr=L/2.0\n",
"R=l/cr\n",
"up1=up*((math.pi/2.0)*math.sin(math.pi/9.0)*(1+(math.cos(math.pi/9.0)/(R**2-(math.sin(math.pi/9.0)**2))**(1/2.0))))\n",
"s=(cr*math.cos(math.pi/9.0))+(l**2-(cr**2)*(math.sin(math.pi/9.0))**2)**(1/2.0)\n",
"x=l+cr-s\n",
"V=Vc+(math.pi/4.0)*(d*100)**2*x\n",
"\n",
"#Output \n",
"print\"(a)The cylinder bore and The stroke length (d = L) = \",round(L,2),\"cm\"\n",
"print\"(b) The average piston speed = \",round(up,2),\"m/s\"\n",
"print\"(c) The clearence volume of one cylinder = \",round(Vc,2),\"cm**3\"\n",
"print\"(d) The piston speed at the end of combustion = \",round(up1,2),\"m/s\"\n",
"print\"(e) The distance the piston travels from TDC at the end of combustion = \",round(x,2),\"cm\" \n",
"print\"(f) Instantaneous volume = \",round(V,2),\"cm**3\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The cylinder bore and The stroke length (d = L) = 8.6 cm\n",
"(b) The average piston speed = 8.6 m/s\n",
"(c) The clearence volume of one cylinder = 62.5 cm**3\n",
"(d) The piston speed at the end of combustion = 5.71 m/s\n",
"(e) The distance the piston travels from TDC at the end of combustion = 0.32 cm\n",
"(f) Instantaneous volume = 81.24 cm**3\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.2 page no: 521"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"d=0.175 #The diameter of the bore in m\n",
"L=0.32 #The length of the stroke in m\n",
"p=6.5 #Mean effective pressure in bar\n",
"pp=0.4 #Pumping loop mean effective pressure in bar\n",
"N=510.0 #The speed of the engine in rpm\n",
"pm=0.65 #Diagrams from the dead cycle give a mep in bar\n",
"n=55.0 #Firing strokes per minute \n",
"\n",
"#Calculations\n",
"import math\n",
"pmi=p-pp \n",
"c=((N/2.0)-n) \n",
"ipw=pmi*10**5*L*(math.pi/4.0)*d**2*(n/60.0)*(1/1000.0) \n",
"Pp=pm*10**5*L*(math.pi/4.0)*d**2*(c/60.0)*(1/1000.0) \n",
"fp=ipw-Pp #Power in kW\n",
"fip=pmi*10**5*L*(math.pi/4.0)*d**2*(N/(2*60))*(1/1000.0)\n",
"fbp=fip-fp\n",
"nm=(fbp/fip)*100\n",
"\n",
"#Output \n",
"print\" The full load break power = \",round(fbp,2),\"kW\" \n",
"print\"The mechanical efficiency of the engine = \",round(nm,2),\"percent\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The full load break power = 17.32 kW\n",
"The mechanical efficiency of the engine = 86.79 percent\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.3 page no: 522"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"d=0.09 #The diameter of the bore in m\n",
"L=0.1 #The length of the stroke in m\n",
"T=120 #The torque measured in Nm\n",
"n=4 #Number of cylinders \n",
"\n",
"#Calculations\n",
"import math\n",
"pmb=((4*math.pi*T)/(L*(math.pi/4)*d**2*n))/10.0**5\n",
"\n",
"#Output \n",
"print\"The brake mean effective pressure = \",round(pmb,2),\"bar\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The brake mean effective pressure = 5.93 bar\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.4 page no: 522"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"d=0.06 #The diameter of the bore in m \n",
"L=0.085 #The length of the stroke in m\n",
"N=3000 #The speed of the engine in rpm\n",
"r=0.35 #Torque arm radius in m\n",
"W=160 #Weight in N\n",
"f=6.6 #Fuel consumption in l/h\n",
"g=0.78 #specific gravity of the fuel \n",
"CV=44000 #The calorific value of the fuel in kJ/kg\n",
"w1=114 #Brake load for cylinder 1 in N\n",
"w2=110 #Brake load for cylinder 2 in N\n",
"w3=112 #Brake load for cylinder 3 in N\n",
"w4=116 #Brake load for cylinder 4 in N\n",
"n=4 #Number of cylinders\n",
"\n",
"#Calculations\n",
"import math\n",
"Vf=(f*10**-3)/3600.0\n",
"df=g*1000\n",
"mf=df*Vf\n",
"T=W*r\n",
"bp=(2*math.pi*N*T)/(60.0*1000.0)\n",
"pmb=((120*bp*1000)/(L*(math.pi/4.0)*d**2*N*n))/10.0**5\n",
"nb=((bp)/(mf*CV))*100\n",
"bsfc=(mf*3600)/bp\n",
"bp1=((2*math.pi*N*w1*r)/(60.0*1000.0))\n",
"ip1=bp-bp1 \n",
"ip2=bp-((2*math.pi*N*w2*r)/(60*1000))\n",
"ip3=bp-((2*math.pi*N*w3*r)/(60*1000))\n",
"ip4=bp-((2*math.pi*N*w4*r)/(60*1000))\n",
"ip=ip1+ip2+ip3+ip4\n",
"nm=(bp/ip)*100\n",
"pmi=pmb/(nm/100.0)\n",
"\n",
"#Output\n",
"print\"The brake power =\",round(bp,3),\"kW \" \n",
"print\"The brake mean effective pressure = \",round(pmb,3),\"bar\"\n",
"print\"The brake thermal efficiency =\" ,round(nb,0),\"percent\"\n",
"print\"The brake specific fuel consumption = \",round(bsfc,3),\"kg/kWh\"\n",
"print\"The indicated power = \",round(ip,2),\"kW \"\n",
"print\"The mechanical efficiency =\", round(nm,1),\"percent \" \n",
"print\"The indicated mean effective pressure = \",round(pmi,1),\"bar\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The brake power = 17.593 kW \n",
"The brake mean effective pressure = 7.32 bar\n",
"The brake thermal efficiency = 28.0 percent\n",
"The brake specific fuel consumption = 0.293 kg/kWh\n",
"The indicated power = 20.67 kW \n",
"The mechanical efficiency = 85.1 percent \n",
"The indicated mean effective pressure = 8.6 bar\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.5 page no: 523"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"d=0.15 #The diameter of the bore in m\n",
"L=0.16 #The length of the stroke in m\n",
"N=500 #The speed of the engine in rpm\n",
"mf=0.0475 #Fuel consumption in kg/min\n",
"CV=42000 #The calorific value in kJ/kg\n",
"w=400 #The tension on either side of the pulley in N\n",
"c=2.2 #Brake circumference in m\n",
"l=50 #Length of the indicator diagram in mm\n",
"ap=475 #Area of the positive loop of indicator diagram in mm**2\n",
"an=25 #Area of the negative loop of indicator diagram in mm**2\n",
"s=0.8333 #Spring constant in bar/mm\n",
"\n",
"#Calculations\n",
"import math\n",
"r=c/(2.0*math.pi)\n",
"T=w*r\n",
"bp=(2*math.pi*N*T)/(60.0*1000.0)\n",
"M=(ap-an)/l\n",
"imep=M*s\n",
"ip=(imep*10**5*L*(math.pi/4.0)*d**2*(N/(2.0*60.0))*(1/1000.0))\n",
"nm=(bp/ip)*100\n",
"nb=((bp*60)/(mf*CV))*100\n",
"ni=((nb/100.0)/(nm/100.0))*100\n",
"bsfc=(mf*60)/bp\n",
"\n",
"#Output\n",
"print\"(a) The brake power = \",round(bp,3),\"kW\"\n",
"print \"(b) The indicated power = \",round(ip,3),\"kW\"\n",
"print\"(c) The mechanical efficiency = \",round(nm,0),\"percent\"\n",
"print\"(d) The brake thermal efficiency = \",round(nb,3)\n",
"print\"(e) The indicated thermal efficiency = \",round(ni,3)\n",
"print\"(f) The brake specific fuel consumption = \",round(bsfc,3),\" kg/kWh\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The brake power = 7.333 kW\n",
"(b) The indicated power = 8.835 kW\n",
"(c) The mechanical efficiency = 83.0 percent\n",
"(d) The brake thermal efficiency = 22.055\n",
"(e) The indicated thermal efficiency = 26.573\n",
"(f) The brake specific fuel consumption = 0.389 kg/kWh\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.6 page no: 524"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"n=8 #Number of cylinders\n",
"d=0.08 #The diameter of the bore in m\n",
"L=0.1 #The length of the stroke in m\n",
"N=4500 #The speed of the engine in rpm \n",
"dy=0.55 #The dynamometer readings in m\n",
"w=40 #The weight of the dynamometer scale reading in kg\n",
"c=100 #Fuel consumption in cc\n",
"t=9.5 #Time taken for fuel consumption in s\n",
"CV=44000 #The calorific value of the fuel in kJ/kg\n",
"p=1 #The atmospheric air pressure in bar\n",
"T=300 #The atmospheric air temperature in K\n",
"ma=6 #Mass flow rate of air in kg/min\n",
"g=0.7 #Specific gravity of the fuel \n",
"Vc=65 #The clearance volume of each cylinder in cc\n",
"R=287 #Real gas constant in J/kgK\n",
"g=1.4 #Isentropic index\n",
"\n",
"#Calculations\n",
"import math\n",
"bp=(2*math.pi*N*dy*w*9.81)/(60.0*1000.0)\n",
"bmep=((bp*1000*60)/(L*(math.pi/4.0)*d**2*(N/2.0)*n))/10.0**5\n",
"mf=(c*g*3600)/(t*2.0*1000.0)\n",
"bsfc=(mf/bp)\n",
"bsac=(ma*60)/bp\n",
"a=bsac/bsfc\n",
"nb=((bp*3600)/(mf*CV))*100\n",
"Va=(ma*R*T)/(p*10.0**5)\n",
"Vs=(math.pi/4.0)*d**2*L*(N/2.0)*n\n",
"nv=(Va/Vs)*100\n",
"Vs1=((math.pi/4.0)*d**2*L)*10**6\n",
"cr=(Vs1+Vc)/Vc\n",
"na=(1-(1/cr)**(g-1))*100\n",
"re=((nb)/(na))*100\n",
"\n",
"#Output\n",
"print\"The brake power = \",round(bp,1),\"kW\" \n",
"print\"The brake mean effective pressure = \",round(bmep,3),\"bar\"\n",
"print\"The brake specific fuel consumption = \",round(bsfc,3),\"kg/kWh\"\n",
"print\"The brake specific air consumption = \",round(bsac,3),\"kg/kWh\"\n",
"print\"The air fuel ratio = \",round(a,2)\n",
"print\"The brake thermal efficiency = \",round(nb,3),\"percent\" \n",
"print\"The volumetric efficiency = \",round(nv,1),\"percent\"\n",
"print\"The relative efficiency = \",round(re,1),\"percent\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The brake power = 101.7 kW\n",
"The brake mean effective pressure = 6.744 bar\n",
"The brake specific fuel consumption = 0.261 kg/kWh\n",
"The brake specific air consumption = 3.54 kg/kWh\n",
"The air fuel ratio = 13.57\n",
"The brake thermal efficiency = 31.369 percent\n",
"The volumetric efficiency = 57.1 percent\n",
"The relative efficiency = 54.1 percent\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.7 page no: 526"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"n=6 #Number of cylinders\n",
"Do=0.03 #Orifice diameter in m\n",
"Cd=0.6 #Coefficient of discharge \n",
"H=0.14 #Pressure drop across the orifice\n",
"d=0.1 #The diameter of the bore in m\n",
"L=0.11 #The length of the stroke in m\n",
"W=540 #Brake load in N\n",
"N=2500 #Engine speed in rpm\n",
"ch=83/17 #C/H ratio by mass\n",
"p=1 #Ambient pressure in bar\n",
"t=18 #Time taken for fuel consumption in s\n",
"f=100 #The amount of fuel consumption in cc\n",
"T=300.0 #Ambient air temperature in K\n",
"df=780 #The density of the fuel in kg/m**3\n",
"R=287.0 #Real gas constant in J/kgK\n",
"g=9.81 #Gravitational force constant in m/s**2\n",
"dhg=13600 #Density of Hg in kg/m**3\n",
"\n",
"#Calculations\n",
"import math\n",
"da=(p*10**5)/(R*T)\n",
"Va=(Cd*(math.pi/4.0)*Do**2*(2*g*H*(dhg/da))**(1/2.0))\n",
"Vs=(math.pi/4.0)*d**2*L*(N/(2.0*60.0))*n\n",
"nv=(Va/Vs)*100\n",
"bp=(W*N)/(20000.0)\n",
"bmep=((bp*1000)/(L*(math.pi/4.0)*d**2*(N/(2.0*60.0))*n))/10.0**5\n",
"T=(60*bp*1000)/(2.0*math.pi*N)\n",
"mf=(f/18.0)*(780/1000.0)*(1/1000.0)*3600\n",
"bsfc=mf/bp\n",
"so=(0.83*(32/12.0))+(0.17*(8/1.0))\n",
"sa=so/bsfc\n",
"maa=Va*da\n",
"af=(maa*3600)/mf\n",
"pea=((af-sa)/sa)*100\n",
"\n",
"#Output\n",
"print\"The volumetric efficiency = \",round(nv,3),\"percent\" \n",
"print\"The brake mean effective pressure = \",round(bmep,3),\"bar\" \n",
"print\"The brake power = \",bp,\"kW\" \n",
"print\"The Torque = \",round(T,3),\"Nm\"\n",
"print\"The brake specific fuel consumption = \",round(bsfc,3),\"kg/kWh\" \n",
"print\"The percentage of excess air = \",round(pea,1),\"percent\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The volumetric efficiency = 70.433 percent\n",
"The brake mean effective pressure = 6.25 bar\n",
"The brake power = 67.5 kW\n",
"The Torque = 257.831 Nm\n",
"The brake specific fuel consumption = 0.231 kg/kWh\n",
"The percentage of excess air = 31.9 percent\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.8 page no: 528"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"d=0.2 #The diameter of bore in m\n",
"L=0.3 #The length of the stroke in m\n",
"r=5.5 #The compression ratio of the engine\n",
"N=400 #The speed of the engine in rpm\n",
"imep=4.5 #The indicative mean effective pressure in bar\n",
"a=6 #Air to gas by volume \n",
"CV=12000 #The calorific value of the gas in kJ/m**3\n",
"T=340 #The temperature at the beginning of the compression stroke in K\n",
"p=0.97 #The pressure at the beginning of the compression stroke in bar\n",
"g=1.4 #Adiabatic index\n",
"\n",
"#Calculations\n",
"import math\n",
"Vs=(math.pi/4.0)*d**2*L\n",
"Vc=Vs/(r-1)\n",
"V=Vs+Vc\n",
"Vg=V/7.0\n",
"Vntp=((p*Vg)/T)*(273/1.013)\n",
"Q=Vntp*CV*(N/(2.0*60.0))\n",
"ip=(imep*10**5*L*(math.pi/4.0)*d**2*(N/(2.0*60.0))*(1/1000.0))\n",
"ni=(ip/Q)*100\n",
"na=(1-(1/r)**(g-1))*100\n",
"nr=(ni/na)*100\n",
"\n",
"#Output\n",
"print\"The indicated power = \",round(ip,2),\"kW\" \n",
"print\"The thermal efficiency = \",round(ni,1),\"percent\" \n",
"print\"The relative efficiency = \",round(nr,1),\"percent\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The indicated power = 14.14 kW\n",
"The thermal efficiency = 27.9 percent\n",
"The relative efficiency = 56.5 percent\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.9 page no: 529"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"n=6.0 #Number of cylinder\n",
"bp=130.0 #Brake power in kW\n",
"N=1800.0 #The speed of the engine in rpm \n",
"CV=42000.0 #The calorific value of the fuel in kJ/kg\n",
"C=86.0 #The composition of carbon in the fuel in percent\n",
"H=13.0 #The composition of Hydrogen in the fuel in percent\n",
"NC=1.0 #The non combustibles present in the fuel in percent\n",
"na=85.0 #The absolute volumetric efficiency in percent\n",
"ni=38.0 #The indicated thermal efficiency in percent\n",
"nm=80.0 #The mechanical efficiency in percent\n",
"ac=110.0 #The excess consumption of air in percent\n",
"sb=1.2 #The stroke to the bore ratio \n",
"da=1.3 #The density of air in kg/m**3\n",
"\n",
"#Calculations \n",
"import math\n",
"saf=(((C/100.0)*(32/12.0))+((H/100.0)*(8/1.0)))*(1/0.23)\n",
"aaf=saf*(1+1.1)\n",
"Ma=(0.23*32)+(0.77*28)\n",
"a=(C/100)/12.0\n",
"b=(H/100.0)/2.0\n",
"x=aaf/Ma\n",
"c=(0.21*x)-a-(b/2.0)\n",
"d1=0.79*x\n",
"ip=bp/(nm/100.0)\n",
"mf=ip/((ni/100.0)*CV)\n",
"ma=mf*aaf\n",
"Va=ma/da\n",
"Vs=Va/(na/100.0)#The swept volume per second in m**3/s\n",
"d=((Vs*(4/math.pi)*(1/1.2)*((2*60)/N)*(1/n))**(1/3.0))*1000\n",
"L=1.2*d\n",
"T=a+c+d1\n",
"CO2=(a/T)*100\n",
"O2=(c/T)*100\n",
"N2=(d1/T)*100\n",
"\n",
"#Output\n",
"print\"The volumetric composition of dry exhaust gas :\" \n",
"print\"1) CO2 = \",round(a,2),\"kmol\",\"and\" \n",
"print\"volume = \",round(CO2,2),\"percent\" \n",
"print\"2) O2 = \",round(c,3),\"kmol\",\"and\" \n",
"print\"volume = \",round(O2,3),\"percent\"\n",
"print\"3) N2 = \",round(d1,3),\"kmol\",\"and\" \n",
"print\"volume = \",round(N2,3),\"percent\"\n",
"print\"The bore of the engine = \",round(d,0),\"mm\" \n",
"print\"The stroke of the engine = \",round(L,1),\"mm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The volumetric composition of dry exhaust gas :\n",
"1) CO2 = 0.07 kmol and\n",
"volume = 7.03 percent\n",
"2) O2 = 0.117 kmol and\n",
"volume = 11.456 percent\n",
"3) N2 = 0.831 kmol and\n",
"volume = 81.517 percent\n",
"The bore of the engine = 149.0 mm\n",
"The stroke of the engine = 178.8 mm\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.10 page no: 531"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"d=0.18 #The diameter of the cylinder in m\n",
"L=0.24 #The length of the stroke in m\n",
"t=30.0 #Duration trail in min \n",
"N=9000.0 #Number of revolutions \n",
"Ne=4450.0 #Total number of explosions\n",
"pmi=5.35 #Gross imep in bar\n",
"pp=0.35 #Pumping imep in bar\n",
"W=40.0 #Net load on brake wheel in kg\n",
"dd=0.96 #Diameter of the brake wheel drum in m\n",
"dr=0.04 #Diameter of the rope in m\n",
"V=2.6 #Volume of gas used in m**3\n",
"pg=136.0 #pressure of gas in mmof Hg\n",
"dg=0.655 #The density of gas in kg/m**3\n",
"T=290.0 #The ambient temperature of air in K\n",
"CV=19000.0 #The calorific value of the fuel in kJ/m**3\n",
"ta=40.0 #Total air used in m**3\n",
"p=720.0 #Pressure of air in mm of Hg\n",
"Te=340.0 #Temperature of exhaust gas in degree centigrade \n",
"Cpg=1.1 #Specific heat of gas in kJ/kgK\n",
"C=80.0 #Cooling water circulated in kg\n",
"Tr=30.0 #Rise in temperature of cooling water in degree centigrade \n",
"R=287.0 #Real gas constant in J/kgK\n",
"\n",
"#Calculations\n",
"#import math\n",
"ip=(pmi-pp)*10**5*L*(math.pi/4.0)*d**2*(Ne/(30.0*60.0))*(1/1000.0)\n",
"bp=(math.pi*(N/(30.0*60.0))*W*9.81*(dd+dr)*(1/1000.0))\n",
"pgs=760+(pg/13.6)\n",
"Vg=((pgs*V)/290.0)*(273/760.0)\n",
"Q=(Vg*CV)/30.0\n",
"Qbp=bp*60\n",
"Qc=(C/t)*4.18*Tr\n",
"Va=(((p*ta)/T)*(273/760.0))/30.0\n",
"da=(1.013*10**5)/(R*273)\n",
"ma=Va*da\n",
"mg=(Vg/30)*dg\n",
"me=ma+mg\n",
"Qe=me*Cpg*(Te-(T-273))\n",
"Qu=Q-(Qe+Qc+Qbp)\n",
"nm=(bp/ip)*100\n",
"ni=((ip*60)/Q)*100 \n",
"x=((Qbp/1571.0)*100)\n",
"y=((Qc/1571.0)*100)\n",
"z=((Qe/1571.0)*100)\n",
"k=((Qu/1571.0)*100)\n",
"Qf=Qbp+Qc+Qe+Qu\n",
"\n",
"#Output\n",
"print Qe\n",
"print\" HEAT BALANCE SEAT\"\n",
"\n",
"print \" \\nHeat input kj/min % heat expenditure Kj/min %\"\n",
"print\"--------------------------------------------------------------------------------------------------\"\n",
"print\"heat supplied by fuel \",round(Q,0),\" 100 (a)Heat in bp \", round(Qbp,1),\" \",round(x,1)\n",
"print\" (b)Heat loss to cooling tower \",round(Qc,0),\" \",round(y,1)\n",
"print\" (c) Heat to exhaust gases \",round(Qe,0),\" \",round(z,0)\n",
"print\" (d)unaccounted losses \",round(Qu,0),\" \",round(k,1)\n",
"print\"Total \",round(Q,0),\" 100 total \",round(Qf,0), \" 100.0\"\n",
" \n",
"print\"\\nMechanical efficiency is\",round(nm,2),\"percent\"\n",
"print\"Thermal efficiency is\",round(ni,1),\"percent\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"565.475307496\n",
" HEAT BALANCE SEAT\n",
" \n",
"Heat input kj/min % heat expenditure Kj/min %\n",
"--------------------------------------------------------------------------------------------------\n",
"heat supplied by fuel 1571.0 100 (a)Heat in bp 369.8 23.5\n",
" (b)Heat loss to cooling tower 334.0 21.3\n",
" (c) Heat to exhaust gases 565.0 36.0\n",
" (d)unaccounted losses 301.0 19.1\n",
"Total 1571.0 100 total 1571.0 100.0\n",
"\n",
"Mechanical efficiency is 81.65 percent\n",
"Thermal efficiency is 28.8 percent\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.11 page no: 533"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given \n",
"bp=30 #The brake power in kw\n",
"mf=10 #Mass flow rate of fuel in kg/h\n",
"CV=42000 #Calorific value of the fuel in kJ/kg\n",
"mw=9 #Mass flow rate of water in kg/min\n",
"Tr=60 #Rise in temperature of the cooling water in degree centigrade\n",
"mwe=9.5 #Mass flow rate of water through exhaust gas calorimeter in kg/min\n",
"Tc=40 #Rise in temperature when passing through calorimeter in degree centigrade\n",
"Te=80 #Temperature of exhaust gas leaving the calorimeter in degree centigrade\n",
"a=20 #Air fuel ratio\n",
"T=17 #Ambient temperature in degree centigrade\n",
"Cpw=4.18 #Specific heat of water in kJ/kgK\n",
"Cpg=1 #Mean specific heat of gas in kJ/kgK\n",
"\n",
"#Calculations\n",
"Qf=(mf/60.0)*CV \n",
"Qbp=bp*60\n",
"Qc=mw*Cpw*Tr\n",
"mg=(mf/60.0)+(mf/60.0)*a\n",
"Qe=(mwe*Cpw*Tc)+(mg*Cpg*(Te-T))\n",
"Qu=Qf-(Qbp+Qc+Qe)\n",
"x=((Qbp/Qf))*100\n",
"y=(Qc/Qf)*100\n",
"z=(Qe/Qf)*100\n",
"k=(Qu/Qf)*100\n",
"\n",
"#Output\n",
"print\" HEAT BALANCE SEAT\"\n",
"print \"\\n Heat input kj/min % heat expenditure Kj/min %\"\n",
"print\"--------------------------------------------------------------------------------------------------\"\n",
"print\"heat supplied by fuel \",Qf,\" 100 (a)Heat in bp \", Qbp,\" \",round(x,0)\n",
"print\" (b)Heat loss to cooling tower \",round(Qc,0),\" \",round(y,0)\n",
"print\" (c) Heat to exhaust gases \",round(Qe,0),\" \",round(z,0)\n",
"print\" (d)unaccounted losses \",round(Qu,0),\" \",round(k,0)\n",
"print\"Total \",Qf,\" 100 total \",Qf, \" 100\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" HEAT BALANCE SEAT\n",
"\n",
" Heat input kj/min % heat expenditure Kj/min %\n",
"--------------------------------------------------------------------------------------------------\n",
"heat supplied by fuel 7000.0 100 (a)Heat in bp 1800 26.0\n",
" (b)Heat loss to cooling tower 2257.0 32.0\n",
" (c) Heat to exhaust gases 1809.0 26.0\n",
" (d)unaccounted losses 1134.0 16.0\n",
"Total 7000.0 100 total 7000.0 100\n"
]
}
],
"prompt_number": 85
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 16.12 page no: 534"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"n=4.0 #Number of cylinders\n",
"d=0.085 #The diameter of the bore m\n",
"L=0.095 #The length of the stroke in m\n",
"tr=0.35 #Torque radius in m\n",
"N=3000.0 #The speed of the engine in rpm\n",
"w=430.0 #Net brake load in N\n",
"w1=300.0 #Net brake load produced at the same speed by three cylinders in N\n",
"mf=0.24 #The mass flow rate of fuel in kg/min\n",
"CV=44000.0 #The calorific value of the fuel in kJ/kg\n",
"mw=65.0 #Mass flow rate of water in kg/min\n",
"Tw=12.0 #The rise in temperature in degree centigrade\n",
"a=15.0 #The air fuel ratio \n",
"Te=450.0 #The temperature of the exhaust gas in degree centigrade \n",
"Ta=17.0 #Ambient temperature in degree centigrade\n",
"p=76.0 #Barometric pressure in cm of Hg\n",
"H=15.5 #The proportion of hydrogen by mass in the fuel in percent\n",
"Cpe=1.0 #The mean specific heat of dry exhaust gas in kJ/kgK\n",
"Cps=2.0 #The specific heat of super heated steam in kJ/kgK\n",
"Cpw=4.18 #The specific heat of water in kJ/kgK\n",
"Ts=100.0 #At 76 cm of Hg The temperature in degree centigrade \n",
"hfg=2257 #The Enthalpy in kJ/kg\n",
"R=287.0 #Real gas cons tant in J/kgK\n",
"\n",
"#Calculations\n",
"import math\n",
"bp=(2*math.pi*N*w*tr)/(60.0*1000.0)\n",
"bp1=(2*math.pi*N*w1*0.35)/(60.0*1000.0)\n",
"ip=bp-bp1\n",
"ip1=n*ip\n",
"imep=((ip1*60*1000)/(L*(math.pi/4.0)*d**2*(N/2.0)*n))/10.0**5\n",
"ni=((ip1*60)/(mf*CV))*100\n",
"bsfc=(mf*60)/bp\n",
"Vs=(math.pi/4.0)*d**2*L*(N/2.0)*n\n",
"ma=a*mf\n",
"da=(1*10**5)/(R*(Ta+273))\n",
"Va=ma/da\n",
"nv=(Va/Vs)*100\n",
"Qf=mf*CV\n",
"Qbp=bp*60\n",
"Qc=mw*Cpw*Tw\n",
"mv=9*(H/100.0)*mf\n",
"me=ma+mf-mv\n",
"Qe=me*Cpe*(Te-Ta)\n",
"Qs=(mv*((Cpw*(Ts-Ta))+hfg+(Cps*(Te-Ts))))\n",
"Qu=Qf-(Qbp+Qc+Qe+Qs)\n",
"x=(Qbp/Qf)*100\n",
"y=(Qc/Qf)*100\n",
"z=(Qe/Qf)*100\n",
"k=(Qs/Qf)*100\n",
"l=(Qu/Qf)*100 \n",
"\n",
"#Output\n",
"print\" HEAT BALANCE SEAT\"\n",
"print \" Heat input kj/min % heat expenditure Kj/min %\"\n",
"print\"----------------------------------------------------------------------------------------------------\"\n",
"print\"heat supplied by fuel \",Qf,\" 100 (a)Heat in bp \", Qbp,\" \",round(x,2)\n",
"print\" (b)Heat loss to cooling tower \",round(Qc,0),\" \",round(y,2)\n",
"print\" (c) Heat to dry exhaust gases \",round(Qe,0),\" \",round(z,1)\n",
"print\" (d)Heat loss in steam \",round(Qs,0),\" \",round(k,1)\n",
"print\" (e)unaccounted losses \",round(Qu,0),\" \",round(l,2)\n",
"print\"Total \",Qf,\" 100 total \",Qf, \" 100\"\n",
"\n",
"print\"\\nimpep \",round(imep,2),\"bar\"\n",
"print\"Thermal efficiency \",round(ni,1),\"percent\"\n",
"print\"bsfc=\",round(bsfc,4),\"kg/kwh\"\n",
"print\"Volumetric efficiency=\",round(nv,1),\"percent\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" HEAT BALANCE SEAT\n",
" Heat input kj/min % heat expenditure Kj/min %\n",
"----------------------------------------------------------------------------------------------------\n",
"heat supplied by fuel 10560.0 100 (a)Heat in bp 2836.85816619 26.86\n",
" (b)Heat loss to cooling tower 3260.0 30.87\n",
" (c) Heat to dry exhaust gases 1518.0 14.4\n",
" (d)Heat loss in steam 1106.0 10.5\n",
" (e)unaccounted losses 1839.0 17.41\n",
"Total 10560.0 100 total 10560.0 100\n",
"\n",
"impep 10.61 bar\n",
"Thermal efficiency 32.5 percent\n",
"bsfc= 0.3046 kg/kwh\n",
"Volumetric efficiency= 92.6 percent\n"
]
}
],
"prompt_number": 21
}
],
"metadata": {}
}
]
}
|