1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter15:Air Capacity and SuperCharging"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.1 page no: 474"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"Vs=0.0028 #Swept volume in m**3\n",
"N=3000 #Speed of the engine in rpm\n",
"ip=12.5 #The average indicated power developed in kW/m**3\n",
"nv=85 #Volumetric efficiency in percent\n",
"p1=1.013 #The atmospheric pressure in bar\n",
"T1=288 #The atmospheric temperature in K\n",
"ni=74 #Isentropic efficiency in percent\n",
"pr=1.6 #The pressure ratio\n",
"nm=78 #All mechanical efficiencies in percent\n",
"g=1.4 #Adiabatic index\n",
"R=287 #Real gas constant in J/kgK\n",
"Cp=1.005 #The specific heat of gas in kJ/kgK\n",
"\n",
"#Calculations\n",
"Vs1=(Vs*(N/2.0)) #Volume swept by the piston per minute in m**3/min\n",
"Vi=(nv/100.0)*Vs1 #Unsupercharged induced volume in m**3/min\n",
"p2=pr*p1 #Blower delivery pressure in bar\n",
"T21=T1*(p2/p1)**((g-1)/g) #Temperature after isentropic compression in K\n",
"T2=T1+((T21-T1)/((ni/100.0))) #Blower delivery temperature in K\n",
"Ve=(Vs1*p2*T1)/(T2*p1) #Equivalent volume at 1.013 bar and 15 degree centigrade in m**3/min\n",
"nv1=(Ve/Vs1)*100 #Volumetric efficiency of supercharged engine in percent\n",
"Vii=Ve-Vi #Increase in induced volume in m**3/min\n",
"ipa=ip*Vii #Increase in ip from air induced in kW\n",
"ipi=((p2-p1)*10**5*Vs1)/(60*1000) #Increase in ip due to increased induction pressure in kW\n",
"ipt=ipa+ipi #Total increase in ip in kW\n",
"bp=ipt*(nm/100.0) #Increase in engine bp in kW\n",
"ma=(p2*(Vs1/60.0)*10**5)/(R*T2) #Mass of air delivered per second by blower in kg/s\n",
"P=ma*Cp*(T2-T1) #Power input to blower in kW\n",
"Pd=P/(nm/100.0) #Power required to drive the blower in kW\n",
"bpn=bp-Pd #Net increase in bp in kW\n",
"bpu=ip*Vi*(80/100.0) #The bp of unsupercharged engine in kW\n",
"bpp=(bpn/(bpu))*100 #Percentage increase in bp in percent\n",
"\n",
"#Output\n",
"print\"The volumetric efficiency of supercharged engine = \",round(nv1,0),\"percent\"\n",
"print\"The increase in brake power by supercharging = \",round(bpn,1),\" kW \"\n",
"print\"The percentage increase in brake power = \",round(bpp,1),\" percent \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The volumetric efficiency of supercharged engine = 134.0 percent\n",
"The increase in brake power by supercharging = 15.1 kW \n",
"The percentage increase in brake power = 42.3 percent \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.2 page no: 477"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"p=1.013 #The pressure at the sea level in bar\n",
"T=283 #The temperature at the sea level in K\n",
"bp=275.0 #Brake power in kW\n",
"N=1800.0 #The speed of the engine in rpm\n",
"a=20 #Air fuel ratio \n",
"R=287 #The real gas constant in J/kgK\n",
"bsfc=0.24 #Brake specific fuel consumption in kg/kWh\n",
"nv=80 #Volumetric efficiency in percent\n",
"p2=0.75 #The atmospheric pressure at altitude in bar\n",
"P=9 #The power consumed by supercharger of the total power produced by the engine in percent\n",
"T2=303 #The temperature of air leaving the supercharger in K\n",
"\n",
"#Calculations\n",
"mf=(bsfc*bp)/60.0 \n",
"ma1=mf*a \n",
"ma=(2/N)*ma1 \n",
"dai=(p*10**5)/(R*T) \n",
"Vd=(ma/(dai*(nv/100.0))) \n",
"pmb=(bp*2*60*1000)/(Vd*N*10**5) \n",
"GP=bp/(1-0.09) \n",
"ma2=(ma1/bp)*GP \n",
"ma1=(ma2*2)/N \n",
"p21=((R*T2*ma1)/((nv/100.0)*Vd))/10.0**5 \n",
"pi=p21-p2 \n",
"\n",
"#Output\n",
"print\"(a) The engine capacity Vd = \",round(Vd,3),\"m**3\" \n",
"print\"The bmep of the unsupercharged engine = \",round(pmb,3),\"bar\" \n",
"print\"(b) Increase in air pressure required in the supercharged = \",round(pi,3),\"bar\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The engine capacity Vd = 0.024 m**3\n",
"The bmep of the unsupercharged engine = 7.483 bar\n",
"(b) Increase in air pressure required in the supercharged = 0.442 bar\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.3 page no: 479"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"Vs=0.003 #Swept volume in m**3\n",
"bmep=9 #Brake mean effective pressure in bar\n",
"N=4000 #The speed of the engine in rpm\n",
"ni=30.0 #Indicated thermal efficiency in percent\n",
"nm=90 #Mechanical efficiency in percent\n",
"bmep1=12 #The brake mean effective pressure of other engine in bar\n",
"N1=4000 #The speed of other engine in rpm\n",
"ni1=25 #The indicated thermal efficiency of other engine in percent\n",
"nm1=91 #The mechanical efficiency of other engine in percent\n",
"m=200 #The mass of naturally aspired engine in kg\n",
"m1=220 #The mass of supercharged engine in kg\n",
"CV=44000 #The calorific value of the fuel in kJ/kg\n",
"\n",
"#Calculations\n",
"bp=(bmep*10**5*Vs*N)/(2.0*60.0*1000) \n",
"ip=bp/(nm/100.0) \n",
"mf=(ip)/((ni/100.0)*CV) \n",
"bp1=(bmep1*10**5*Vs*N1)/(2.0*60.0*1000) \n",
"ip1=bp1/(nm1/100.0) \n",
"mf1=ip1/((ni1/100.0)*CV) \n",
"mf2=mf*3600 \n",
"mf3=mf1*3600 \n",
"x=((200/90.0)-(220/120.0))/((43.2/120.0)-(27.27/90.0)) \n",
"\n",
"#Output\n",
"print\"The maximum hours required for supply of sufficient fuel = \",round(x,3),\"hr\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum hours required for supply of sufficient fuel = 6.823 hr\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.4 Page no 480"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"d=0.1 #The diameter of the bore in m\n",
"L=0.12 #The length of the stroke in m\n",
"N=3000 #The speed of the engine in rpm\n",
"n=4 #Number of cylinders\n",
"R=287 #Real gas constant in J/kgK\n",
"t=120 #Output Torque in Nm\n",
"nm=85 #The mechanical efficiency of the engine in percent\n",
"T1=288 #The inlet temperature of air into compressor in K\n",
"p1=1 #The inlet pressure of air into compressor in bar\n",
"Q=1200 #Heat rejected rate in kJ/min\n",
"T=328 #The outlet temperature of air in K\n",
"p=1.7 #The outlet pressure of air in bar\n",
"nv=90 #Volumetric efficiency in percent\n",
"Cp=1.005 #Specific heat of gas in kJ/kg\n",
"\n",
"#Calculations\n",
"import math\n",
"bp=(2*math.pi*N*t)/(60.0*1000.0) #The brake power in kW\n",
"ip=bp/(nm/100.0) #The indicated power in kW\n",
"pmi=((ip*2*60*1000*4)/(L*(math.pi*d**2)*N*n))/10.0**5 #The mean effective pressure in bar\n",
"Vs=(math.pi/4.0)*d**2*L #Swept volume in m**3\n",
"Vs1=Vs*(N/2.0)*n #Volume swept by the piston per min \n",
"V1=(nv/100.0)*Vs1 #Rate of volume flow of air into the engine in m**3/min\n",
"me=((p*10**5*V1)/(R*T))*60 #Rate of mass flow of air into the engine in kg/h\n",
"E=Q/60.0 #Energy balance in the after cooling in kJ/s\n",
"T2=((bp/E)*T-T1)/((bp/E)-1) #The outlet temperature of air in K\n",
"mc=((bp)/(Cp*(T2-T1)))*3600 #Mass flow rate in kg/h\n",
"maf=mc-me #Rate of air flow available to the consumer in kg/h\n",
"\n",
"#Output\n",
"print\"(a) The imep of the supercharged engine = \",round(pmi,3),\"bar\"\n",
"print\"(b) The rate of air consumed by the engine = \",round(me,1),\"kg/h\" \n",
"print\"(c) The rate of air flow available to the consumer = \",round(maf,1),\"kg/h\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The imep of the supercharged engine = 4.706 bar\n",
"(b) The rate of air consumed by the engine = 551.5 kg/h\n",
"(c) The rate of air flow available to the consumer = 1033.5 kg/h\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.5 page no: 482"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"Vs=0.0045 #Swept volume in m**3\n",
"N=4000.0 #The speed of the engine in rpm \n",
"nv=150.0 #Overall volumetric efficiency in percent\n",
"ni=90.0 #Isentropic efficiency of the compressor in percent\n",
"nm=85.0 #Mechanical efficiency in percent\n",
"T=330.0 #The temperature of compressed air after cooler in K\n",
"p2=1.8 #The pressure of the compressed air in bar\n",
"T1=290.0 #The ambient temperature of air in K\n",
"p1=1.0 #The pressure of the ambient condition in bar\n",
"R=287.0 #The real gas constant in J/kgK\n",
"g=1.4 #Adiabatic index\n",
"Cp=1.005 #The specific heat of gas in kJ/kgK\n",
"\n",
"#Calculations\n",
"T21=T1*(p2/p1)**((g-1)/g) \n",
"T2=T1+((T21-T1)/(ni/100.0)) \n",
"Vs1=Vs*(N/(2*60)) # m**3/s\n",
"Va=(nv/100)*Vs1 \n",
"d=(p1*10**5)/(R*T1) # kg/m**3\n",
"ma=d*Va # kg/s\n",
"Q=ma*Cp*(T2-T) # kJ/s\n",
"P=ma*Cp*(T2-T1) # kW\n",
"Pa=P/(nm/100.0) \n",
"\n",
"#Output\n",
"print \"(a) The rate of heat rejected from the engine after cooler = \",round(Q,2),\"kJ/s\" \n",
"print\"(b) The power absorbed by the supercharger from the engine = \",round(Pa,1),\"kW\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The rate of heat rejected from the engine after cooler = 5.14 kJ/s\n",
"(b) The power absorbed by the supercharger from the engine = 18.8 kW\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.6 page no: 483"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"p1=0.98 #The inlet pressure of air in bar\n",
"T1=290.0 #The inlet temperature of air in K\n",
"p2=1.8 #The pressure of air delivered to the engine in bar\n",
"a=20.0 #The air fuel ratio \n",
"T3=850.0 #The temperature of the exhaust gases leaving the engine in K\n",
"p3=1.6 #The pressure of the exhaust gases leaving the engine in bar\n",
"p4=1.03 #The turbine exhaust pressure in bar\n",
"nc=80.0 #The isentropic efficiency of compressor in percent\n",
"nt=85.0 #The isentropic efficiency of turbine in percent\n",
"Cpa=1.005 #The specific heat of air in kJ/kgK\n",
"Cpg=1.15 #The specific heat of gas in kJ/kgK\n",
"g=1.33 #isentropic index\n",
"h=1.0 #Adiabatic index\n",
"\n",
"#Calculations\n",
"T21=T1*(p2/p1)**(0.286) #value taken in book (g-1/g)=0.286 \n",
"T2=T1+((T21-T1)/(nc/100.0)) \n",
"T22=T2-273 \n",
"T41=T3*(p4/p3)**((g-1)/g) \n",
"T4=T3-((nt/100.0)*(T3-T41)) \n",
"T44=T4-273 \n",
"mf=1.0 # kg/s\n",
"ma=mf*a # kg/s\n",
"Wc=ma*Cpa*(T2-T1) # kW\n",
"mg=ma+mf #Mass flow rate of gas in kg/s\n",
"Wt=mg*Cpg*(T3-T4) \n",
"Pt=(Wc/Wt)*100 \n",
"\n",
"#Output\n",
"print\"(a) The temperature of the air leaving the compressor = \",round(T22,0),\"degree centigrade\" \n",
"print\"(b) The temperature of gases leaving the turbine = \",round(T44,0),\"degree centigrade\" \n",
"print\"(c) The mechanical power used to run the turbocharger = \",round(Pt,1),\"percent\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The temperature of the air leaving the compressor = 86.0 degree centigrade\n",
"(b) The temperature of gases leaving the turbine = 502.0 degree centigrade\n",
"(c) The mechanical power used to run the turbocharger = 76.6 percent\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.7 page no: 485"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"a=14.0 #Air fuel ratio \n",
"T1=288 #The ambient temperature of air in K\n",
"T2=(288-23) #The evaporation of fuel cause 23 degree C drop in mixture temperature in K\n",
"p=1.3 #Pressure ratio \n",
"nc=75 #The isentropic efficiency of the compressor in percent\n",
"Cpm=1.05 #The specific heat of the mixture in kJ/kgK\n",
"Cpa=1.005 #The specific heat of air in kJ/kgK\n",
"g=1.33 #Adiabatic index\n",
"h=1.4 #Isentropic index\n",
"ma=1 #Mass flow rate of air in kg/s\n",
"\n",
"#Calculations\n",
"T31=T2*p**((g-1)/g) \n",
"T3=T2+((T31-T2)/(nc/100.0))\n",
"mm=1+(1/a)\n",
"Wc1=mm*Cpm*(T3-T2)\n",
"T21=T1*p**((h-1)/h)\n",
"T4=T1+((T21-T1)/(nc/100.0))\n",
"T4_=317 #approx value taken in book of T4=317\n",
"Wc2=ma*Cpa*(T4_-T1) \n",
"T5=T4-23\n",
"Ps=((Wc2-round(Wc1,0))*100)/Wc2\n",
"\n",
"#Output\n",
"print\"(a) The power required by the compressor before the supercharger = \",round(Wc1,0),\"kW/kg of air per second\"\n",
"print\"(b) The power required by the compressor after the supercharger = \",round(Wc2,1),\"kW/kg of air per second\" \n",
"print\"Percentage of turbine power used to run the compressor = \",round(Ps,3),\"percent\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The power required by the compressor before the supercharger = 27.0 kW/kg of air per second\n",
"(b) The power required by the compressor after the supercharger = 29.1 kW/kg of air per second\n",
"Percentage of turbine power used to run the compressor = 7.36 percent\n"
]
}
],
"prompt_number": 34
}
],
"metadata": {}
}
]
}
|