1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter11:Two Stroke Engines"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.1 page no:367"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"nsc=75 #The scavenging efficiency of the two stroke engine in percent \n",
"ns=20 #The scavenging efficiency is increased by in percent\n",
"\n",
"#Calculations\n",
"import math\n",
"Rsc=math.log(1/(1-(nsc/100.0)))\n",
"nsc1=(nsc/100.0)+((nsc/100.0)*(ns/100.0))\n",
"Rsc1=math.log(1/(1-(nsc1)))\n",
"Rscr=((Rsc1-Rsc)/Rsc)*100 #Percentage increase in scavenging ratio in persent\n",
"\n",
"#Output\n",
"print\"The percentage change in the scavenging ratio = \",round(Rscr,1),\"percent\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The percentage change in the scavenging ratio = 66.1 percent\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.2 page no:367"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"d=0.12 #The bore diameter of the engine in m\n",
"l=0.15 #The stroke length of the engine in m\n",
"r=16.0 #The compression ratio \n",
"N=2000.0 #The speed of the engine in rpm\n",
"mf=(240/60.0) #Actual air flow per min in kg/min\n",
"T=300.0 #Air inlet temperature in K\n",
"p=1.025 #Exhaust pressure in bar\n",
"R=287 #Real gas constant in J/kg\n",
"\n",
"#Calculations\n",
"import math\n",
"da=(p*10**5)/(R*T)\n",
"Vs=((math.pi)*(d**2)*l)/4.0\n",
"V=(r/(r-1))*Vs\n",
"m=da*V\n",
"m1=m*N\n",
"Rsc=mf/m1 #Scavenging ratio\n",
"nsc=((1-math.exp(-Rsc))*100)\n",
"ntr=((nsc/100.0)/Rsc)*100\n",
"\n",
"#Output\n",
"print\"(a) The scavenging ratio = \",round(Rsc,2)\n",
"print\"(b) The scavenging efficiency = \",round(nsc,1),\"percent \"\n",
"print\"(c) The trapping efficiency = \",round(ntr,1),\" percent\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The scavenging ratio = 0.93\n",
"(b) The scavenging efficiency = 60.5 percent \n",
"(c) The trapping efficiency = 65.1 percent\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.3 page no: 368"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"mf=6.5 #Mass flow rate of fuel in kg/h\n",
"N=3000.0 #The speed of the engine in rpm\n",
"a=15 #The air fuel ratio\n",
"CV=44000 #The calorific value of the fuel in kJ/kg\n",
"pm=9 #The mean piston speed in m/s\n",
"pmi=4.8 #The mean pressure in bar\n",
"nsc=85 #The scavenging efficiency in percent\n",
"nm=80 #The mechanical efficiency in percent\n",
"R=290.0 #Real gas constant in J/kgK\n",
"p=1.03 #The pressure of the mixture in bar\n",
"T=288.0 #The temperature of the mixture in K\n",
"\n",
"#Calculations\n",
"import math\n",
"ma=a*mf\n",
"L=((pm*60)/(2*N))*100\n",
"mac=mf+ma\n",
"mi=(mac)/(nsc/100.0)\n",
"da=(p*10**5)/(R*T)\n",
"d=(((mi/da)*(4/math.pi)*(1/(L/100.0))*(1/(60*N)))**(1/2.0))*100\n",
"ip=(pmi*10**5*(L/100)*((math.pi/4.0)*(d/100)**2)*N)/(60*1000)\n",
"bp=ip*(nm/100.0)\n",
"nth=(bp/((mf/3600.0)*CV))*100\n",
"\n",
"#Output\n",
"print\"The diameter of the bore = \",round(d,2),\"cm\"\n",
"print\"The length of the stroke = \",L,\" cm\" \n",
"print\"The brake power = \",round(bp,2),\" kW\"\n",
"print\"The brake thermal efficiency =\",round(nth,2),\" percent \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The diameter of the bore = 8.83 cm\n",
"The length of the stroke = 9.0 cm\n",
"The brake power = 10.58 kW\n",
"The brake thermal efficiency = 13.32 percent \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.4 page no: 369"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"d=0.08 #The diameter of the bore in m\n",
"L=0.1 #The length of the stroke in m\n",
"r=8.0 #The compression ratio \n",
"o=60.0 #The exhaust port open before BDC in degrees\n",
"v=60.0 #The exhaust port closes after BDC in degrees\n",
"a=15.0 #Air fuel ratio \n",
"T=300.0 #The temperature of the mixture entering into the engine in K\n",
"p=1.05 #The pressure in the cylinder at the time of clomath.sing\n",
"R=290.0 #Real gas constant in J/kgK\n",
"ma=150.0 #Mass flow rate of air in kg/h\n",
"N=4000.0 #The speed of the engine in rpm\n",
"\n",
"#Calculations\n",
"import math\n",
"mf=ma/a\n",
"mac=ma+mf\n",
"r=(L*100)/2.0\n",
"Le=(r+(r*math.sin (math.pi/6.0)))/100.0\n",
"Vse=(math.pi*d**2*Le)/4.0\n",
"V=(r/(r-1))*Vse\n",
"V=0.00043 #Value in book after approximation\n",
"da=(p*10**5)/(R*T)\n",
"m=V*da\n",
"mi=m*60*N\n",
"Rsc=mac/mi \n",
"nsc=(1-(exp(-Rsc)))*100\n",
"ntr=nsc/Rsc\n",
"\n",
"#Output\n",
"print\"The scavenging ratio = \",round(Rsc,2)\n",
"print\"The scavenging efficiency =\",round(nsc,2),\" percent \"\n",
"print\"The trapping efficiency = \",round(ntr,2),\"percent\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The scavenging ratio = 1.28\n",
"The scavenging efficiency = 72.32 percent \n",
"The trapping efficiency = 56.3 percent\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.5 page no: 371"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"d=8.25 #The diameter of the bore in cm\n",
"L=11.25 #The length of the stroke in cm\n",
"r=8.0 #The compression ratio \n",
"N=2500.0 #The speed of the engine in rpm\n",
"ip=17.0 #Indicated power in kW\n",
"a=0.08 #Fuel air ratio \n",
"T=345.0 #Inlet temperature mixture in K\n",
"p=1.02 #Exhaust pressure in bar\n",
"CV=44000.0 #The calorific value of the fuel in kJ/kg\n",
"nth=0.29 #Indicated thermal efficiency\n",
"M=114.0 #Molar mass of fuel \n",
"R=8314.0 #Universal Gas constant in J/kgK\n",
"\n",
"#Calculations\n",
"import math\n",
"Vs=(math.pi*d**2*L)/4 #Displacement volume in cm**3\n",
"V=(r/(r-1))*Vs #Total cylinder volume in m**3\n",
"ps=((29*p*10**5)/(R*T))*(1/(1+a*(29/M))) #The density of dry air in kg/m**3\n",
"nsc=((ip*1000)/((N/60)*V*10**-6*ps*a*CV*1000*nth))*100 #The scavenging efficiency in percent\n",
"\n",
"#Output\n",
"print\"The scavenging efficiency = \",round(nsc,2),\" percent\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The scavenging efficiency = 57.54 percent\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.6 page no: 372"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"S=15.0 #The speed of the math.piston in m/s\n",
"ps=0.35 #The scavenging pressure in bar\n",
"pa=1.03 #Atmospheric pressure in bar\n",
"r=18.0 #The compression ratio \n",
"t=35.0 #The inlet temperature in degree centigrade\n",
"Rsc=0.9 #The scavenging ratio \n",
"ta=15.0 #The atmospheric temperature in degree centigrade\n",
"nc=0.75 #Compressor efficiency \n",
"g=1.4 #Adiabatic index\n",
"R=287.0 #Real gas constant in J/kgK\n",
"Cp=1005.0 #Specific heat of gas in J/kgK\n",
"\n",
"#Calculations\n",
"import math\n",
"pi=ps+pa #The scavenging pressure in bar\n",
"Ti=(273+ta)+t #The inlet temperature in K\n",
"pr=pa/math.pi #The ratio of the pressure for calculations\n",
"di=(pi*10**5)/(R*Ti) #The density in kg/m**3\n",
"ai=(g*R*Ti)**(1/2.0) #The sonic velocity in m/s\n",
"C=(Rsc)/(2*((r-1)/r)*(ai/S)*(pi/pa)*((2/(g-1))*(((pr)**(2/g))-((pr)**((g+1)/g))))**(1/2.0))\n",
"ds=(pa*10**5)/(R*Ti) #The density in kg/m**3\n",
"mep=(ds*Rsc*Cp*Ti*(((pi/pa)**((g-1)/g))-1))/((nc*((r-1)/r))*10**5) #Mean effective pressure in bar\n",
"\n",
"#Output\n",
"print\"The flow coefficient = \",round(C,3) \n",
"print\"The compressor mean effective pressure = \",round(mep,1),\"bar\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The flow coefficient = 0.028\n",
"The compressor mean effective pressure = 0.4 bar\n"
]
}
],
"prompt_number": 33
}
],
"metadata": {}
}
]
}
|