summaryrefslogtreecommitdiff
path: root/Fundamental_of_internal_combustion_engines/chap10.ipynb
blob: 880733d2a131a193aba8cd9b41fb64a1a82d60dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter10:CI Engines-Fuel Injection System"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.1 page no: 332"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "bsfc=0.3                    #The brake specific fuel consumption in kg/kWh\n",
      "bp=250                      #The brake power in kW\n",
      "N=1500                      #Number of cycles per min in rpm\n",
      "CA=15                       #Crank angle in degrees\n",
      "pi1=30                      #The pressure of air in the cylinder at the beginning of the injection in bar\n",
      "pi2=60                      #The pressure of air in the cylinder at the end of the injection in bar\n",
      "pf1=220                     #The fuel injection pressure at the beginning in bar\n",
      "pf2=550                     #The fuel injection pressure at the end in bar\n",
      "Cd=0.65                     #The coefficient of discharge for the injector \n",
      "df=850                      #The density of the fuel in kg/m**3\n",
      "p1=1.013                    #The atmospheric pressure in bar\n",
      "n=4.0                       #The number of orifices used in the nozzle\n",
      "x=6.0                       #Number of cylinders\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "mf=bsfc*bp/60.0             \n",
      "F=(mf/(N/2.0))*(1/x)        \n",
      "s=(CA/360.0)/(N/60.0)       \n",
      "mf1=F/s                     \n",
      "p1=pf1-pi1                 \n",
      "p2=pf2-pi2\n",
      "pa=(p1+p2)/2.0\n",
      "Af=(mf1/(Cd*(2*df*pa*10.0**5)**(1/2.0)))*10**6\n",
      "do=((Af/n)*(4/math.pi))**(1/2.0)\n",
      "\n",
      "#Output\n",
      "print\"The nozzle area required per injection = \" ,round(Af,3),\"mm**2\"\n",
      "print\"The diameter of the orifice = \",round(do,3), \"mm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The nozzle area required per injection =  1.067 mm**2\n",
        "The diameter of the orifice =  0.583 mm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.2 page no: 333"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "bp=30                                   #The brake power of the engine in kW\n",
      "N=3000                                  #The engine speed in rpm \n",
      "bsfc=0.28                               #The brake specific fuel consumption in kg/kWh \n",
      "Api=35                                  \n",
      "p2=160                                  #The pressure at which fuel is injected in bar\n",
      "CA=28                                   #The crank angle in degrees\n",
      "p1=35                                   #The pressure in the combustion chamber in bar\n",
      "Cv=0.92                                 #The coefficient of velocity \n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "S=141.5/(131.5+Api)                    \n",
      "df=S*1000                               \n",
      "D=(CA/360.0)/(N/60.0)\n",
      "F=(bsfc*bp)/((N/2.0)*60)\n",
      "mf=F/D\n",
      "Cf=Cv*((2*(p2-p1)*10**5)/df)**(1/2.0)\n",
      "Af=(mf/(df*Cf))*10**6\n",
      "d=(4*Af/math.pi)**(1/2.0)                   \n",
      "\n",
      "#Output\n",
      "print\"The velocity of injection of the fuel = \",round(Cf,1),\"m/s \"\n",
      "print\"The diameter of the fuel orifice = \",round(d,3),\" mm \"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The velocity of injection of the fuel =  157.8 m/s \n",
        "The diameter of the fuel orifice =  0.755  mm \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.3 Page no 334"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "d=0.8*10**-3                              #The diameter of an orifice in m\n",
      "A=1.65*10**-6                             #The cross sectional area in m**2\n",
      "Cd=0.9                                    #The discharge coefficient of the orifice \n",
      "Cp=0.85                                   #The coefficient of the passage\n",
      "p1=170                                    #The injection pressure in bar\n",
      "p2=25                                     #The compression pressure of the discharge in bar\n",
      "df=850                                    #The density of the fuel in kg/m**3\n",
      "\n",
      "#Calculations\n",
      "Q=((145/(22.931*10.0**9))**(1/2.0))*10**6  \n",
      "p=170-(2.161*10**9*(Q/10.0**6)**2)\n",
      "Cf=Cd*((2*(p-p2)*10**5)/df)**(1/2.0)\n",
      "\n",
      "#Output\n",
      "print\"The discharge of fuel through the injector = \",round(Q,1),\"cm**2/s\" \n",
      "print\"The jet velocity through the orifice = \",round(Cf,1),\" m/s\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The discharge of fuel through the injector =  79.5 cm**2/s\n",
        "The jet velocity through the orifice =  158.2  m/s\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.4 page no: 336"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "s=20                         #Spray penetration in cm\n",
      "t1=15.7                      #The spray penetration of 20 cm in ms\n",
      "pi1=150                      #The injection pressure in bar\n",
      "pi2=450.0                    #The injection pressure to be used in bar\n",
      "p2=15                        #The combustion chamber pressure in bar\n",
      "d1=0.34                      #The diameter of the orifice in mm\n",
      "s1=20                        #The penetration for an orifice in cm\n",
      "d2=0.17                      #If the diameter of the orifice in cm\n",
      "t11=12                       #The spray penetration in ms\n",
      "\n",
      "#Calculations\n",
      "t2=(t1*(pi1-p2)**(1/2.0))/(pi2-p2)**(1/2.0)\n",
      "s2=d2*(s1/d1)\n",
      "t21=t11*(d2/d1)\n",
      "\n",
      "#Output\n",
      "print\"(a) The time required for the spray to penetrate = \",round(t2,3),\"ms\"\n",
      "print\"(b) The spray penetration of the orifice = \",round(s2,3),\"cm\"\n",
      "print\"The time required for the spray to penetrate = \",round(t21,3),\"ms\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The time required for the spray to penetrate =  8.746 ms\n",
        "(b) The spray penetration of the orifice =  10.0 cm\n",
        "The time required for the spray to penetrate =  6.0 ms\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.5 page no: 336"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "v=6.5                       #The volume of fuel in the barrel in cc\n",
      "d=0.3                       #The dimeter of fuel pipe line in cm\n",
      "l=65                        #The length of the fuel pipe line in cm \n",
      "vi=2.5                      #The volume of fuel in the injection valve in cc\n",
      "K=78.5*10**-6               #The coefficient of compressibility of the oil per bar\n",
      "p1=1                        #The atmospheric pressure in bar\n",
      "p2=180                      #The pressure due to pump in bar\n",
      "v3=0.1                      #The pump displacement necessary for the fuel in cc\n",
      "e=0.75                      #The effective stroke of the plunger in cm\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "V1=v+((math.pi*d**2)/4.0)*l+vi\n",
      "V=K*V1*(p2-p1)\n",
      "T=(V)+v3\n",
      "L=T*(4/math.pi)*(1/(e**2))\n",
      "\n",
      "#Output\n",
      "print\"(a) The total displacement of the plunger = \",round(T,3),\"cc\" \n",
      "print\"(b) The effective stroke of the plunger = \",round(L,3),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) The total displacement of the plunger =  0.291 cc\n",
        "(b) The effective stroke of the plunger =  0.659 cm\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.6 page no: 337"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "n=4.0                               #Number of cylinders \n",
      "N=2500                              #The engine speed in rpm \n",
      "P=90                                #The power produced by the engine in kW\n",
      "bsfc=0.28                           #The brake specific fuel consumption in kg/kWh\n",
      "v=3.5                               #The volume of fuel in the barrel in cc\n",
      "vp=2.5                              #Volume of fuel in the pipe line in cc\n",
      "vi=2.0                                #The fuel inside the injector in cc\n",
      "p1=280.0                              #The average injection pressure in bar\n",
      "p2=30.0                               #The compression pressure of air during injection in bar\n",
      "df=850.0                            #The density of the fuel in kg/m**3\n",
      "K=80*10**-6                         #The coefficient of compressibility of fuel per bar\n",
      "pi=1.0                                #The pressure with which fuel enter into the barrel in bar\n",
      "\n",
      "#Calculations\n",
      "import math\n",
      "F=(bsfc*P)/((N/2.0)*60)\n",
      "F1=F/n\n",
      "Vf=(F1/df)*10**6\n",
      "V1=v+vp+vi\n",
      "V=K*V1*(p1-math.pi)\n",
      "Vp=Vf+V\n",
      "W=((1/2.0)*(p1-math.pi)*10**5*V*10**-6)+((p1-p2)*10**5*Vf*10**-6)\n",
      "P1=(W*N)/(2*60*1000)     #Power lost per cylinder in kW\n",
      "P2=P1*4        #Total power lost for pumping the fuel in kW\n",
      "\n",
      "#Output \n",
      "print\"The displacement volume of one plunger per cycle = \",round(Vp,3),\"cc\" \n",
      "print\"Total power lost for pumping the fuel = \",round(P2,3),\"kW\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The displacement volume of one plunger per cycle =  0.276 cc\n",
        "Total power lost for pumping the fuel =  0.41 kW\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10.7 page no: 339"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#given\n",
      "v1=0.3                              #Velocity of the pump plunger in m/s\n",
      "l=0.575                             #The length of the fuel pipe in m\n",
      "A=1/20.0                            #The cross sectional area of pipe to the plunger cylinder\n",
      "a=1/40.0                            #The area of nozzle hole to the pipe \n",
      "p1=27.6                             #Initial pressure in the line in bar \n",
      "p2=27.6                             #The compression pressure of the engine\n",
      "K=17830*10**5                       #The bulk modulus of fuel in N/m**2\n",
      "df=860.0                            #The density of the fuel in kg/m**3\n",
      "\n",
      "#Calculations\n",
      "Vs=(K/df)**(1/2.0)\n",
      "t=l/Vs\n",
      "Vp=(1/A)*v1\n",
      "p=((K/Vs)*Vp)/10.0**5\n",
      "pi=p+p1\n",
      "po=p1+p\n",
      "vc=Vp-(a*((2*(po-p2))/df)**(1/2.0))\n",
      "pr=26.8                            #By trial , Pressure\n",
      "Vc=pr*(Vs/(K/10.0**5))\n",
      "po1=p1+p+pr\n",
      "vo=a*((2*(po1-p2)*10**5)/df)**(1/2.0)\n",
      "\n",
      "#Output\n",
      "print\"(a)The velocity of the pressure disturbance = \",round(Vs,0),\"m/s\"\n",
      "print\"(b) The time taken by the disturbance to travel through the pipe line = \",round(t,4),\" s\"  \n",
      "print\"(c) The velocity at the pump end of the pipe line as the plunger moves = \",round(Vp,2),\" m/s\"\n",
      "print\"The pressure at the pump end of pipe line as the plunger moves = \",round(pi,2),\"bar\"\n",
      "print\"(d)The magnitude of the first reflected pressure = \",round(pr,2),\"bar\" \n",
      "print\"The magnitude of the first reflected velocity wave =\",round(Vc,2),\"m/s\" \n",
      "print\"(e)The pressure at the oriface end of the pipe line after the first reflection = \",round(po1,1),\"bar\"\n",
      "print\"The velocity at the oriface end of the pipe line after the first reflection = \",round(vo,2),\" m/s \"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The velocity of the pressure disturbance =  1440.0 m/s\n",
        "(b) The time taken by the disturbance to travel through the pipe line =  0.0004  s\n",
        "(c) The velocity at the pump end of the pipe line as the plunger moves =  6.0  m/s\n",
        "The pressure at the pump end of pipe line as the plunger moves =  101.9 bar\n",
        "(d)The magnitude of the first reflected pressure =  26.8 bar\n",
        "The magnitude of the first reflected velocity wave = 2.16 m/s\n",
        "(e)The pressure at the oriface end of the pipe line after the first reflection =  128.7 bar\n",
        "The velocity at the oriface end of the pipe line after the first reflection =  3.83  m/s \n"
       ]
      }
     ],
     "prompt_number": 30
    }
   ],
   "metadata": {}
  }
 ]
}