1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.1 Page No: 44"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"d=20.0 #Cylinder bore diameter in cm\n",
"L=25.0 #Stroke length in cm\n",
"Vc=1570.0 #The clearance volume in cm**3\n",
"P1=1.0 #Pressure at the beginning of the compression in bar\n",
"T1=300.0 #Temperature at the beginning of the compression in K\n",
"T3=1673 #The maximum temperature of the cycle in K\n",
"Cv=0.718 #specific heat at constant volume for air in kJ/kgK\n",
"R=0.287 #Real gas constant in kJ/kgK\n",
"g=1.4 #Isentropic index\n",
"c=500.0 #Number of cycles per minute\n",
"\n",
"#Calculations\n",
"import math\n",
"Vs=(math.pi/4.0)*d**2*L\n",
"V1=Vs+Vc\n",
"V2=Vc #cm**3\n",
"r=V1/V2 #Compression ratio\n",
"T2=T1*r**(g-1)\n",
"P2=P1*r**g\n",
"P3=P2*(T3/T2) #In constant volume, process Pressure at point 3 in bar\n",
"T4=T3*(1/r)**(g-1) #In isentropic process, Temperature at point 4 in degree centigrade\n",
"P4=P3*(1/r)**(g) #In isentropic process, Pressure at point 4 in bar\n",
"no=(1-(1/r)**(g-1))*100 #Air standard efficiency of otto cycle\n",
"Q1=Cv*(T3-T2) #Heat supplied in kJ/kg\n",
"Q2=Cv*(T4-T1) #Heat rejected in kJ/kg\n",
"W=Q1-Q2 #Work done per unit mass in kJ/kg\n",
"m=((P1*10**5*V1*10**-6)/(R*T1))/1000.0 #The amount of mass in kg\n",
"W1=W*m #Work done in kJ\n",
"pm=((W1*10**3)/(Vs*10.0**-6))/10.0**5 #Mean effective pressure in N/m**2\n",
"P=W1*(c/60.0) #Power developed in kW\n",
"\n",
"#Output\n",
"print\"Temperature at point 2 = \",round(T2-273.15,1),\"C\"\n",
"print\"Pressure at point 2 =\" ,round(P2,2),\" bar\"\n",
"print\"Pressure at point 3 = \",round(P3,2),\"bar\" \n",
"print\"Temperature at point 4 = \",round(T4-273.15),\" C \\nPressure at point 4 = \",round(P4,3),\"bar\"\n",
"print\"Air standard efficiency of otto cycle = \",round(no,2),\" percent \"\n",
"print\"Work done = \",round(W1,2),\" kJ\"\n",
"print\"Mean effective pressure = \",round(pm,2),\"bar \"\n",
"print\"Power developed = \",round(P,1),\"kW \"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Temperature at point 2 = 341.3 C\n",
"Pressure at point 2 = 12.29 bar\n",
"Pressure at point 3 = 33.47 bar\n",
"Temperature at point 4 = 544.0 C \n",
"Pressure at point 4 = 2.723 bar\n",
"Air standard efficiency of otto cycle = 51.17 percent \n",
"Work done = 4.26 kJ\n",
"Mean effective pressure = 5.42 bar \n",
"Power developed = 35.5 kW \n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.2 Page No: 46"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"CV=42000.0 #The calorific value of the fuel in kJ/kg\n",
"pa=5.0 #Percentage of compression\n",
"Pa=1.2 #Pressure in the cylinder at 5% compression stroke\n",
"pb=75 #Percentage of compression\n",
"Pb=4.8 #Pressure in the cylinder at 75% compression stroke\n",
"g=1.3 #polytropic index\n",
"g1=1.4 #Isentropic index\n",
"n=0.6 #Air standard efficiency\n",
"\n",
"#Calculations\n",
"V=(Pb/Pa)**(1/1.3)#Ratio of volumes\n",
"r=(V*(pb/100.0)-(pa/100.0))/((1-(pa/100.0))-(V*(1-(pb/100.0)))) #Compression ratio\n",
"n1=((1-(1/r)**(g1-1)))*100 #Relative efficiency\n",
"nthj=n*(n1/100.0) #Indicated thermal efficiency\n",
"x=(1/(CV*nthj))*3600 #Specific fuel consumption in kg/kW.h\n",
"\n",
"#Output\n",
"print\"The compression ratio of the engine is \",round(r,1)\n",
"print\"The specific fuel consumption is \",round(x,3),\"kg/kwh\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The compression ratio of the engine is 9.5\n",
"The specific fuel consumption is 0.241 kg/kwh\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.4 Page No: 48"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"d=0.2 #The diameter of the cylinder bore in m\n",
"L=0.3 #The length of the stroke in m\n",
"P1=1 #The pressure at the beginning of the compression in bar\n",
"T1=300.0 #The temperature at the beginning of the compression in K\n",
"r=16.0 #Compression ratio\n",
"V=0.08 #Cutt off takes place at 8& of the stroke\n",
"R=0.287 #Real gas constant in kJ/kgK\n",
"g=1.4 #Isentropic index\n",
"Cp=1.005 #Specific heat at constant prassure in kJ/kgK\n",
"Cv=0.718 #specific heat at constant volume for air in kJ/kgK\n",
"\n",
"#Calculations\n",
"import math\n",
"Vs=(math.pi/4.0)*d**2*L #Swept volume in m**3\n",
"Vc=Vs/(r-1) #Clearance volume in m**3\n",
"V2=Vc #Volume at point 2 in m**3\n",
"V1=Vs+Vc #Volume at point 1 in m**3\n",
"m=(P1*10**5*V1)/(R*T1) #The amount of mass in kg\n",
"P2=P1*(r**g) #Pressure at point 2 in bar\n",
"P3=P2 #Pressure at point 3 in bar\n",
"T2=T1*r**(g-1) #Temperature at point 2 in K\n",
"V3=(V*Vs)+V2 #Volume at point 3 in m**3\n",
"C=V3/V2 #Cut off ratio\n",
"T3=C*T2 #Temperature at point 3 in K\n",
"P4=P3*(C/r)**g #Pressure at the point 4 in bar\n",
"T4=T3*(C/r)**(g-1) #Temperature at point 4 in K\n",
"V4=V1 #Volume at point 4 in m**3\n",
"Q1=(m*Cp*(T3-T2))/1000.0 #Heat supplied in kJ\n",
"Q2=(m*Cv*(T4-T1))/1000.0 #Heat rejected in kJ\n",
"W=(Q1-Q2) #Work done per cycle in kJ\n",
"na=(W/Q1)*100 #Air standard efficiency\n",
"Pm=(W*1000/Vs)/10.0**5 #Mean effective pressure in bar\n",
"\n",
"#Output\n",
"print\"(a) Volume at point 2 = \",round(V2,5),\" m**3 \\nVolume at point 1 = \",round(V1,5),\"m**3 \"\n",
"print\"Pressure at point 2 = \",round(P2,1),\" bar\" \n",
"print\"Temperature at point 2 = \",round(T2,1),\"K\"\n",
"print\"beeta is\",C,\"\\nTemperature at point 3 = \",round(T3,0),\" K \\nPressure at point 4 =\",round(P4,3),\" bar\"\n",
"print\"Temperature at point 4 = \",round(T4,1),\" K \\nVolume at point 4 = \",round(V4,5),\"m**3\" \n",
"print\"(b) cut off ratio = \",round(c,1)\n",
"print\"(c) Work done per cycle = \",round(W,3),\"kJ\" \n",
"print\"(d) air smath.tandard efficiency = \",round(na,1),\" percent\" \n",
"print\"(e)Mean effective pressure = \",round(Pm,2),\" bar \"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) Volume at point 2 = 0.00063 m**3 \n",
"Volume at point 1 = 0.01005 m**3 \n",
"Pressure at point 2 = 48.5 bar\n",
"Temperature at point 2 = 909.4 K\n",
"beeta is 2.2 \n",
"Temperature at point 3 = 2001.0 K \n",
"Pressure at point 4 = 3.016 bar\n",
"Temperature at point 4 = 904.7 K \n",
"Volume at point 4 = 0.01005 m**3\n",
"(b) cut off ratio = 500.0\n",
"(c) Work done per cycle = 7.736 kJ\n",
"(d) air smath.tandard efficiency = 60.4 percent\n",
"(e)Mean effective pressure = 8.21 bar \n"
]
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.5 Page No:50"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"P1=7\n",
"g=1.4\n",
"r=12\n",
"import numpy as np\n",
"from scipy.optimize import fsolve\n",
"\n",
"def f(b):\n",
" return P1-1/((g-1)*(r-1))*(g*r**g*(b-1)-r*(b**1.4-1))\n",
"b = fsolve(f, 1)\n",
"f(b)\n",
"na=(1-(1/(r**(g-1)))*(((b**g)-1)/(g*(b-1))))*100 #Air standard efficiency\n",
"\n",
"#Output \n",
"print\"The cut off ratio = \",round(b,1),\" \\n The air standard efficiency =\",na,\"percent\"\n",
"#NOTE:In the book Answer is wrong for Air standard efficiency .\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The cut off ratio = 2.2 \n",
" The air standard efficiency = [ 55.47110058] percent\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.6 Page no 51"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"m=30.0 #The air fuel ratio by mass\n",
"T1=300 #The temperature of air at the beginning of the compression in K\n",
"r=16 #The compression ratio\n",
"CV=42000 #The calorific value of the fuel in kJ/kg\n",
"g=1.4 #Isentropic index\n",
"Cp=1.005 #Specific heat at constant prassure in kJ/kgK\n",
"\n",
"#Calculations\n",
"T2=T1*(r**(g-1)) #Temperature at point 2 in K\n",
"T3=((1/m)*(CV/Cp))+T2 #Temperature at point 3 in K\n",
"C=T3/T2 #The cut off ratio\n",
"n=(1-((1/r**(g-1))*(((C**g)-1)/(g*(C-1)))))*100#The ideal efficiency of the engine based on the air standard cycle\n",
"\n",
"#Output\n",
"print\" The ideal efficiency of the engine based on the air standard cycle = \",round(n,1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The ideal efficiency of the engine based on the air standard cycle = 58.9\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.7 Page No: 52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#given\n",
"p1=1.0 #Inlet pressure in bar\n",
"p2=32.425 #Pressure at the end of isentropic compression in bar\n",
"r=6.0 #Ratio of expansion\n",
"r1=1.4 #Isentropic index\n",
"\n",
"#Calculations\n",
"rc=(p2/p1)**(1/r1) #Compression ratio\n",
"b=(rc/r) #cut-off ratio\n",
"n=(1-((b**r1-1)/(rc**(r1-1)*r1*(b-1))))*100 \n",
"pm=((p1*rc**r1*n/100.0*r1*(b-1))/((r1-1)*(rc-1))) \n",
"\n",
"#Output\n",
"print\"Air-smath efficiency is \",round(n,3),\"percent\"\n",
"print\"Mean effective pressure is \",round(pm,3),\"bar\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Air-smath efficiency is 56.671 percent\n",
"Mean effective pressure is 5.847 bar\n"
]
}
],
"prompt_number": 31
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.8 Page No: 52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"rc=15.0 #Compression ratio\n",
"p1=1 #Pressure at which compression begins in bar\n",
"T1=27.0+273.0 #Temperature in K\n",
"pm=60 #Maximum pressure in bar\n",
"h=2 #Heat transfered to air at constant volume is twice that at consmath.tant pressure\n",
"g=1.4 #Isentropic index\n",
"Cv=0.718 #specific heat at constant volume for air in kJ/kgK\n",
"Cp=1.005 #specific heat at constant pressure for air in kJ/kgK\n",
"R=0.287 #Real gas constant in kJ/kgK\n",
"\n",
"#Calculations\n",
"T2=(T1*rc**(g-1)) #Temperature in K\n",
"p2=(p1*rc**g) #Pressure in bar\n",
"T3=(T2*(pm/p2)) #Temperature in K\n",
"T4=(Cv*(T3-T2))/(2*Cp)+T3 #Temperature in K\n",
"b=(T4/T3) #Cut-off ratio\n",
"T5=(T4*(b/rc)**(g-1)) #Temperature in K\n",
"p5=(p1*(T5/T1)) #Pressure in bar\n",
"Q1=(Cv*(T3-T2))+(Cp*(T4-T3))#Heat supplied per unit mass in kJ/kg\n",
"Q2=Cv*(T5-T1) #Heat rejected per unit mass in kJ/kg\n",
"W=(Q1-Q2) #Workdone in kJ/kg\n",
"n=(W/Q1)*100 #Air standard efficiency\n",
"Vs=((1*R*1000*T1)/(p1*10**5))*(1-1/rc) #Swept volume in m**3/kg\n",
"pmean=((W*1000)/Vs)/10.0**5 #Mean-effective pressure in bar\n",
"\n",
"#Output\n",
"print\"(a) The pressures and temperatures at the cardinal points of the cycle are \"\n",
"print\"T2 =\",round(T2,1),\" K \\np2 =\", round(p2,1),\" bar \\nT3 = \",round(T3,1), \"K \\np3 =\",round(p3,1),\"bar\"\n",
"print\"T4 =\",round(T4,1),\"K \\nT5 = \",round(T5,1), \"K \\np5 = \",round(p5,1),\"bar\"\n",
"print\"(b) The cycle efficiency is\",round(n,0),\"percent\" \n",
"print\"(c) The mean effective pressure of the cycle is \",round(pmean,1),\"bar\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The pressures and temperatures at the cardinal points of the cycle are \n",
"T2 = 886.3 K \n",
"p2 = 44.3 bar \n",
"T3 = 1200.0 K \n",
"p3 = 52.2 bar\n",
"T4 = 1312.1 K \n",
"T5 = 460.3 K \n",
"p5 = 1.5 bar\n",
"(b) The cycle efficiency is 66.0 percent\n",
"(c) The mean effective pressure of the cycle is 2.8 bar\n"
]
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.9 Page No: 55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"r=12.0 #Compression ratio\n",
"B=1.615 #Cut off ratio\n",
"p3=52.17 #Maximum pressure in bar\n",
"p4=p3 #Maximum pressure in bar\n",
"p1=1 #Initial pressure in bar\n",
"T1=(62+273) #Initial temperature in K\n",
"n=1.35 #Indices of compression and expansion\n",
"g=1.4 #Adiabatic exponent\n",
"mR=0.287 #Real gas constant in kJ/kgK\n",
"Cv=0.718 #specific heat at constant volume for air in kJ/kgK\n",
"Cp=1.005 #specific heat at constant pressure for air in kJ/kgK\n",
"\n",
"#Calculations\n",
"T2=T1*r**(n-1) #The temperature at point 2 in K\n",
"p2=p1*(r)**n #The pressure at point 2 in bar\n",
"T3=T2*(p3/p2) #The temperature at point 3 in K\n",
"T4=T3*B #The temperature at point 4 in K\n",
"T5=T4*(B/r)**(n-1) #The temperature at point 5 in K\n",
"Q12=((g-n)/(g-1))*mR*((T1-T2)/(n-1)) # kJ/kg\n",
"Q23=Cv*(T3-T2) \n",
"Q34=Cp*(T4-T3) \n",
"Q45=((g-n)/(g-1))*mR*((T4-T5)/(n-1)) \n",
"Q51=Cv*(T1-T5) \n",
"Q1=Q23+Q34+Q45 \n",
"Q2=-Q12+(-Q51) \n",
"W=Q1-Q2 \n",
"E=(W/Q1)*100 \n",
"Vs=((mR*T1)/p1)*(r-1)/r # m**3/kg\n",
"pm=(W*1000/Vs)/10.0**3 #Mean effective pressure in bar\n",
"\n",
"#Output\n",
"print\"(a)The temperature at cardinal points \\nT2 =\",round(T2,0),\" K\\nT3 = \",round(T3,0),\"K \\nT4 = \",round(T4,0),\"K \\nT5 = \",round(T5,0),\"K \" \n",
"print\"(b) The cycle efficiency = \",round(E,1),\" percent\"\n",
"print\"(c) The mean effective pressure of the cycle = \",round(pm,3),\"bar\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The temperature at cardinal points \n",
"T2 = 799.0 K\n",
"T3 = 1456.0 K \n",
"T4 = 2352.0 K \n",
"T5 = 1166.0 K \n",
"(b) The cycle efficiency = 56.9 percent\n",
"(c) The mean effective pressure of the cycle = 9.638 bar\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.10 Page No: 57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Input data\n",
"p1=1.0 #Inlet pressure in bar\n",
"T1=27.0+273.0 #Temperature in K\n",
"p2=4.0 #pressure at point 2 in bar\n",
"p3=16.0 #Maximum pressure in bar\n",
"Cv=0.573 #specific heat at constant volume for gas in kJ/kgK\n",
"Cp=0.761 #specific heat at constant pressure for gas in kJ/kgK\n",
"\n",
"#Calculations\n",
"g=(Cp/Cv) \n",
"T2=(T1*(p2/p1)**((g-1)/g)) # K\n",
"T3=(p3/p2)*T2 \n",
"T4=T3*(p1/p3)**((g-1)/g) \n",
"Q1=Cv*(T3-T2) #kJ/kg\n",
"Q2=Cp*(T4-T1) \n",
"W=Q1-Q2 \n",
"n=(W/Q1)*100 \n",
"r=(p2/p1)**(1/g)\n",
"R=(Cp-Cv) #kJ/kg.K\n",
"Vs=(R*1000*T1*(r-1))/(p1*10.0**5*r) #m**3/kg\n",
"pm=(W/(Vs*100.0)) \n",
"\n",
"#Output\n",
"print\"(a) The work done per kg of gas is \",round(W,1),\"kJ/kg\"\n",
"print\"(b) The efficiency of the cycle is \",round(n,1),\"percent \"\n",
"print\"(c) Mean effective pressure is \",round(pm,1),\"bar\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The work done per kg of gas is 306.2 kJ/kg\n",
"(b) The efficiency of the cycle is 42.2 percent \n",
"(c) Mean effective pressure is 8.4 bar\n"
]
}
],
"prompt_number": 5
}
],
"metadata": {}
}
]
}
|