1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6: Bipolar junction Transistors (BJTs)"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.1 page No.215"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Ic=9.95\t\t\t#in mA\n",
"Ie=10 \t\t#in mA\n",
"\n",
"Ib=Ie-Ic\t\t#in mA\n",
"\n",
"print\"Emitter current is \",Ib,\"mA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Emitter current is 0.05 mA\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.2 page No. 216"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"IC=0.98\t\t\t#in mA\n",
"IB=20.0\t\t\t#in uA\n",
"IB=IB*10**-3\t\t#in mA\n",
"\n",
"IE=IB+IC\t\t#in mA\n",
"\n",
"alpha=IC/IE\t\t#unitless\n",
"Beta=IC/IB\t\t#unitless\n",
"\n",
"print\"Emitter current is\",IE,\"mA\"\n",
"print\"Current amplification factor is \",alpha\n",
"print\"Current gain factor is \",Beta"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Emitter current is 1.0 mA\n",
"Current amplification factor is 0.98\n",
"Current gain factor is 49.0\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.3 page No.216"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"alfaDC=0.98\t\t\t#unitless\n",
"ICBO=4\t\t\t\t#in uA\n",
"ICBO=ICBO*10**-3\t\t#in mA\n",
"IB=50\t\t\t\t#in uA\n",
"IB=IB*10**-3\t\t\t#in mA\n",
"\n",
"IC=alfaDC*IB/(1-alfaDC)+ICBO/(1-alfaDC)\t#in mA\n",
"IE=IC+IB\t\t\t#in mA\n",
"\n",
"print\"Emitter current is \",IE,\"mA\"\n",
"print\"Collector current is \",IC,\"mA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Emitter current is 2.7 mA\n",
"Collector current is 2.65 mA\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.4 page No. 216"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"IB=10\t\t\t#in uA\n",
"IB=IB*10**-3\t\t#in mA\n",
"Beta=99\t\t\t#Unitless\n",
"ICO=1\t\t\t#in uA\n",
"ICO=ICO*10**-3\t\t#in mA\n",
"\n",
"IC=Beta*IB+(1+Beta)*ICO\t#in mA\n",
"\n",
"print\"Collector current in mA : \",IC,\"mA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Collector current in mA : 1.09 mA\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.5 Page No.216"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Ic=5*10**-3 #mA collector current\n",
"Ic_=10*10**-3 #mA collector current\n",
"Ib=50*10**-6 #mA, Base current\n",
"Icbo=1*10**-6 #micro A, Current to base open current\n",
"\n",
"beta=(Ic-Icbo)/(Ib+Icbo)\n",
"alpha=(beta/(1+beta))\n",
"Ie=Ib+Ic\n",
"\n",
"Ib=(Ic_-(beta+1)*Icbo)/(beta)\n",
"\n",
"print\"(i) Current gain factor is\",round(beta,0)\n",
"print\" Current amplification factor is\",round(alpha,2)\n",
"print\" Emitter Current is\",Ie*1000,\"mA\"\n",
"print\"(ii)New level of Ib is\",round(Ib*10**6,0),\"micro A\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Current gain factor is 98.0\n",
" Current amplification factor is 0.99\n",
" Emitter Current is 5.05 mA\n",
"(ii)New level of Ib is 101.0 micro A\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.6 page No. 222"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"delVEB=200\t\t\t#in Volts\n",
"delIE=5\t\t\t\t#in mA\n",
"\n",
"rin=delVEB/delIE\t\t#in ohm\n",
"\n",
"print\"Dynamic input resistance is \",rin,\"mohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Dynamic input resistance is 40 mohm\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.7 page No. 222"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"ICBO=12.5 \t\t\t#in uA\n",
"ICBO=ICBO*10**-3 \t\t#in mA\n",
"IE=2 \t\t\t\t#in mA\n",
"IC=1.97 \t\t\t#in mA\n",
"\n",
"alfa=(IC-ICBO)/IE \t\t#unitless\n",
"IB=IE-IC \t\t\t#in mA\n",
"\n",
"print\"Current gain : \",round(alfa,3)\n",
"print\"Base current is \",IB,\"mA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Current gain : 0.979\n",
"Base current is 0.03 mA\n"
]
}
],
"prompt_number": 32
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.8 page No. 222"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"RL=4.0 \t\t\t#in Kohm\n",
"VL=3.0\t\t\t#in volt\n",
"alfa=0.96 \t\t#unitless\n",
"IC=VL/RL \t\t#in mA\n",
"\n",
"IE=IC/alfa \t\t#in mA\n",
"IB=IE-IC \t\t#in mA\n",
"\n",
"print\"Base current ia\",round(IB,2),\"mA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Base current ia 0.03 mA\n"
]
}
],
"prompt_number": 37
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.9 page No.227"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"VCC=10\t\t\t #in volt\n",
"RL=800\t\t\t #in ohm\n",
"VL=0.8\t\t\t #in volt\n",
"alfa=0.96\t\t #unitless\n",
"\n",
"VCE=VCC-VL \t\t#in Volt\n",
"IC=VL*1000/RL \t\t#in mA\n",
"Beta=alfa/(1-alfa) \t#unitless\n",
"IB=IC/Beta \t\t#in mA\n",
"\n",
"print\"Collector-emitter Voltage is \",VCE,\"V\"\n",
"print\"Base current in uA : \",round(IB*1000,2),\"microA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Collector-emitter Voltage is 9.2 V\n",
"Base current in uA : 41.67 microA\n"
]
}
],
"prompt_number": 41
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.10 page No. 227"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"alfao=0.98 \t\t#unitless\n",
"ICO=10 \t\t\t#in uA\n",
"ICO=ICO*10**-3 \t\t#in mA\n",
"IB=0.22 \t\t#in mA\n",
"\n",
"IC=(alfao*IB+ICO)/(1-alfao) \t#in mA\n",
"\n",
"print\"Collector current is\",IC,\"mA\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Collector current is 11.28 mA\n"
]
}
],
"prompt_number": 45
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.11 page No. 228"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"delVEB=250 \t\t#in mVolts\n",
"delIE=1 \t\t#in mA\n",
"\n",
"rin=delVEB/delIE \t#in ohm\n",
"\n",
"print\"Dynamic input resistance is\",rin,\"ohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Dynamic input resistance is 250 ohm\n"
]
}
],
"prompt_number": 47
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.12 page No. 228"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"delVCE=10-5 \t\t#in Volts\n",
"delIC=5.8-5\t \t#in mA\n",
"\n",
"rin=delVCE/delIC \t#in Kohm\n",
"\n",
"print\"Dynamic output resistance is \",rin,\"kohm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Dynamic output resistance is 6.25 kohm\n"
]
}
],
"prompt_number": 49
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.13 page No.232"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"VCC=10 \t\t\t#in volt\n",
"RC=8 \t\t\t#in Kohm\n",
"Beta=40 \t\t#unitless\n",
"IB=15 \t\t\t#in uA\n",
"IB=IB*10**-3 \t\t#in mA\n",
"\n",
"IC=VCC/RC \t\t#in mA\n",
"IC=Beta*IB \t\t#in mA\n",
"VCE=VCC-IC*RC \t\t#in Volts\n",
"\n",
"print\"Operating point Q is (\",VCE,\"V,\",IC,\"mA)\"\n",
"\n",
"import matplotlib.pyplot as plt\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"\n",
"Vce=[0,10]\n",
"Ic=[1.25,0]\n",
"plt.xlabel('Vce,V')\n",
"plt.ylabel('Ic,mA')\n",
"ax.plot([5.2], [0.6], 'o')\n",
"ax.annotate('(5.2V,0.6 mA)', xy=(5.4,0.7))\n",
"\n",
"a=plot(Vce,Ic)\n",
"show(a)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Operating point Q is ( 5.2 V, 0.6 mA)\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1YVGXeB/DvwJBiGhgqioA4IjK8Q6BhmlO8CBTUEhXa\nauILiIAS1uNDWxe6u1qkayKQmaGb6SI+a74VjAYr6FqiBgIiKBqkkMuGwSqpIDPn+UN3isB4keEM\n8P1cV9fFDPc582Uum9/cv3POfSSCIAggIqIBT0/sAEREpBtYEIiICAALAhER3cOCQEREAFgQiIjo\nHhYEIiICoOWCMH/+fJiamsLR0fE3x506dQpSqRSfffaZNuMQEdFv0GpBCAsLg1Kp/M0xKpUKK1as\ngJ+fH3hJBBGReLRaEKZPn47hw4f/5pjk5GSEhIRg5MiR2oxCREQdEPUYQk1NDfbv34/IyEgAgEQi\nETMOEdGAJmpBiI2NxbvvvguJRAJBENgyIiISkVTMF//mm28QGhoKAKirq0NWVhYMDAwQFBTUapy1\ntTUuXbokRkQioj5rwoQJuHjxYuc3ELSssrJScHBw6HDcvHnzhD179rT7u16I2WckJCSIHUFn8L34\nGd+Ln/G9+FlXPzu1OkOYNWsW8vLyUFdXBwsLC6xatQp37twBAERERGjzpYmIqIu0WhDS09M7PXbb\ntm1aTEJERB3hlcp9jEKhEDuCzuB78TO+Fz/je9F9knt9Jp3237OQiIio87r62ckZAhERAWBBICKi\ne1gQiIgIAAsCERHdw4JAREQAWBCIiOgeFgQiIgLAgkBERPewIBAREQAWBCIiuocFgYiIALAgEBHR\nPSwIREQEgAWBiIjuYUEgIiIALAhERHQPCwIREQHoQwWh9N+lYkcgIurX+kxBUHyiwPJDy3G96brY\nUYiI+qU+UxBKl5Si4XYDbFNs8WnRp7zHMhFRD5MIfeCT9Zc3is6vzkdUZhQGSwcjJSAFLqNdRE5H\nRKSbfvnZ2RlanSHMnz8fpqamcHR0bPf3O3fuhLOzM5ycnPDEE0+guLi4w31OMZ+C/IX5mOs8FzN3\nzER0ZjTqb9X3dHQiogFHqwUhLCwMSqXyvr+XyWQ4evQoiouL8fbbbyM8PLxT+9XX00f4Y+E4t+Qc\nVGoV5KlypBWkQS2oeyo6EdGAo/WWUVVVFQIDA1FSUvKb4+rr6+Ho6Ijq6uo2v+to2lNwtQBRmVFQ\nC2qkBqTC3cz9gXMTEfV1OtUy6oq0tDQEBAR0a1u3MW44Pv84It0jEZgeiPCD4ai7WdfDCYmI+jep\n2AEA4MiRI9i6dSuOHz9+3zErV67U/KxQKKBQKFr9Xk+ih3ku8/C87fNIOJIAu1Q7rFKsQvhj4dDX\n09dSciIi3ZGbm4vc3Nxuby96y6i4uBjBwcFQKpWwtrZuP2QXpz0AUFxbjOjMaDQ2NyI1IBWeFp5d\nzk5E1Jf1qZbR5cuXERwcjB07dty3GHSXk6kT8ubl4fWpryPk/0Iwb9881DbW9uhrEBH1J1qdIcya\nNQt5eXmoq6uDqakpVq1ahTt37gAAIiIisHDhQuzduxeWlpYAAAMDA5w8ebJtyG7MEH7pRtMN/Ono\nn7DtzDa8Nf0tRE2OglRPJ7plRERa09XPzj53YdqDKPuhDDFZMaj9qRYp/imYYTWjB9IREekmFoQO\nCIKAPWV7EHcoDtMsp2Gd7zqYDTPrkX0TEemSPnUMQQwSiQQhdiEoiyqDbLgMTpucsPb4WjSrmsWO\nRkQkqgE3Q/i1imsVWKZchsqGSmz02wifCT5aeR0iot7GllE3CIKAgxcOIlYZC7cxblg/cz0sjSy1\n9npERL2BLaNukEgkCJoUhNIlpXAc5QjXza5YfXQ1brfcFjsaEVGv4QyhHZX1lYg7HIeS2hIk+SXh\nGZtneu21iYh6CltGPUh5UYmlWUthO8IWG/w2QDZc1usZiIi6iy2jHuRn7YeSyBJ4mnvCY4sHEo4k\n4Oadm2LHIiLSChaEDgySDkL89HiciTiD8mvlsP/AHvvK9/EWnkTU77Bl1EU53+YgJisGlkaW2Oi/\nETYmNmJHIiJqF1tGWuYl80LR4iL4TvDF1LSpiM+OR2Nzo9ixiIgeGAtCNxjoGyDOMw4lkSWovlEN\neaocu0t368wshoioO9gy6gHHvjuG6KxomBiaINk/Gfaj7MWORETElpEYpo+bjm/Cv0GwPBiKTxRY\nfmg5rjddFzsWEVGXsCD0EKmeFNGTo1G6pBQNtxsgT5VjR/EOnZ7ZEBH9EltGWpJfnY+ozCgYGhgi\n2T8ZLqNdxI5ERAMMW0Y6Yor5FOQvzMccpzmYuWMmojOjUX+rXuxYRET3xYKgRfp6+gh/LBznlpyD\nSq2CPFWOtII0qAW12NGIiNpgy6gXFVwtQFRmFNSCGqkBqXA3cxc7EhH1Y1zcTsepBTW2F21HfE48\nAm0CscZrDUYMGSF2LCLqh3gMQcfpSfQwz2UeyqLKYCg1hF2qHTad2gSVWiV2NCIa4DhDEFlxbTGi\nM6PR2NyI1IBUeFp4ih2JiPoJtoz6IEEQkH42HW98+QZ8ZD5I9E6E6VBTsWMRUR+nUy2j+fPnw9TU\nFI6Ojvcds3TpUkycOBHOzs4oLCzUZhydJZFIMNtxNsqjyjHq4VFw2OSApBNJaFG3iB2NiAYQrRaE\nsLAwKJXK+/4+MzMTFy9eREVFBT766CNERkZqM47OGzZoGN7zeQ9H5x3FwQsH4brZFXlVeWLHIqIB\nQqsFYfr06Rg+fPh9f3/gwAG8+uqrAIApU6agoaEBtbW12ozUJ8hHyvHlnC+RMCMBc/bOwew9s/H9\nje/FjkVE/ZyoZxnV1NTAwsJC89jc3BzV1dUiJtIdEokEIXYhKIsqg2y4DE6bnLD2+Fo0q5rFjkZE\n/ZRU7AC/PuAhkUjaHbdy5UrNzwqFAgqFQoupdMfDDz2MPz/9Z7zq/CqWKZdh65mtSPZPhrfMW+xo\nRKRjcnNzkZub2+3ttX6WUVVVFQIDA1FSUtLmd4sXL4ZCoUBoaCgAwNbWFnl5eTA1bX2GTX8/y6iz\nBEHAwQsHEauMhdsYN6yfuR6WRpZixyIiHaVTZxl1JCgoCNu3bwcAnDhxAsbGxm2KAf1MIpEgaFIQ\nSpeUwnGUI1w3u2L10dW43XJb7GhE1A9odYYwa9Ys5OXloa6uDqampli1ahXu3LkDAIiIiAAAREdH\nQ6lU4uGHH8a2bdvg5ubWNiRnCO2qrK9E3OE4lNSWIMkvCc/YPCN2JCLSIbwwbQBSXlRiadZS2I6w\nxQa/DZANl4kdiYh0QJ9qGVHP8LP2Q0lkCTzNPeGxxQMJRxJw885NsWMRUR/DgtBPDJIOQvz0eJyJ\nOIPya+Ww/8Ae+8r3cWZFRJ3GllE/lfNtDmKyYmBpZImN/hthY2IjdiQi6mVsGREAwEvmhaLFRfCd\n4IupaVMRnx2PxuZGsWMRkQ5jQejHDPQNEOcZh5LIElTfqIY8VY7dpbs52yKidrFlNIAc++4YorOi\nYWJogmT/ZNiPshc7EhFpEVtGdF/Tx03HN+HfIFgeDMUnCiw/tBzXm66LHYuIdAQLwgAj1ZMienI0\nSpeUouF2A+Spcuwo3sEZGBGxZTTQ5VfnIyozCoYGhkjxT4HzaGexIxFRD2HLiLpkivkU5C/Mxxyn\nOfDd4YuYzBjU36oXOxYRiYAFgaCvp4/wx8Jxbsk5tKhbIE+VI60gDWpBLXY0IupFbBlRGwVXCxCV\nGQW1oEZqQCrczdzFjkRE3cDF7ahHqAU1thdtR3xOPAJtArHGaw1GDBkhdiwi6gIeQ6AeoSfRwzyX\neSiLKoOh1BB2qXbYdGoTVGqV2NGISEs4Q6BOKa4tRnRmNBqbG5EakApPC0+xIxFRB9gyIq0RBAHp\nZ9PxxpdvwEfmg0TvRJgO5R3uiHQVW0akNRKJBLMdZ6M8qhwjh4yEwyYHJJ1IQou6RexoRNQDOEOg\nbiv7oQwxWTGo/akWKf4pmGE1Q+xIRPQLbBlRrxIEAXvK9iDuUBymWU7DOt91MBtmJnYsIgJbRtTL\nJBIJQuxCUBZVBtlwGZw2OWHt8bVoVjWLHY2IuogzBOpRFdcqsEy5DJUNlUj2T4a3zFvsSEQDFltG\nJDpBEHDwwkHEKmPhNsYN62euh6WRpdixiAYctoxIdBKJBEGTglC6pBSOoxzhttkNq4+uxu2W22JH\nI6LfoNWCoFQqYWtri4kTJyIxMbHN7+vq6uDn5wcXFxc4ODjgr3/9qzbjUC8zNDBEgiIBpxadwumr\np+HwgQO+uPCF2LGI6D601jJSqVSYNGkSsrOzMXbsWHh4eCA9PR1yuVwzZuXKlWhqasI777yDuro6\nTJo0CbW1tZBKpa1DsmXULygvKrE0aylsR9hig98GyIbLxI5E1K/pTMvo5MmTsLa2hpWVFQwMDBAa\nGor9+/e3GjNmzBhcv373Fo7Xr1+HiYlJm2JA/YeftR9KIkvgae4Jjy0eSDiSgJt3boodi4ju0VpB\nqKmpgYWFheaxubk5ampqWo1ZtGgRSktLYWZmBmdnZyQlJWkrDumIQdJBiJ8ejzMRZ1B+rRz2H9hj\nX/k+zgCJdIDWvo5LJJIOx6xZswYuLi7Izc3FpUuX4OPjg6KiIgwbNqzN2JUrV2p+VigUUCgUPZiW\nepuFkQUyQjKQ820OYrJi8OHpD7HRfyNsTGzEjkbUZ+Xm5iI3N7fb22utIIwdOxZXrlzRPL5y5QrM\nzc1bjfnqq6/whz/8AQAwYcIEjB8/HufPn4e7e9sbsvyyIFD/4SXzQtHiIiSfTMbUtKlY5LYIf3jy\nDxj60FCxoxH1Ob/+srxq1aouba+1lpG7uzsqKipQVVWF5uZmZGRkICgoqNUYW1tbZGdnAwBqa2tx\n/vx5yGQ80DjQGOgbIM4zDiWRJai+UQ15qhy7S3ezjUTUy7R6YVpWVhZiY2OhUqmwYMECxMfHY/Pm\nzQCAiIgI1NXVISwsDJcvX4ZarUZ8fDxmz57dNiTPMhpQjn13DNFZ0TAxNEGyfzLsR9mLHYmoT9Lq\nlcqNjY3Yu3cvdu3ahS++6L3zyVkQBp4WdQs+PP0hVuWtwlynuUhQJOCRQY+IHYuoT+nx006bmprw\n2Wef4cUXX4SZmRlycnKwePHiBwpJ1BGpnhTRk6NRuqQUDbcbIE+VY0fxDn4xINKi+84QDh06hPT0\ndPzjH/+AQqHAiy++iJiYGFRVVfVyRM4QCMivzkdUZhQMDQyR4p8C59HOYkci0nk91jLS09PDs88+\niw8//BBmZnfXtx8/fjwqKyt7JmkXsCAQAKjUKqQVpuHtI2/jJbuX8Men/ojhhsPFjkWks3qsZVRQ\nUAC5XI4ZM2bAz88PaWlpUKlUPRKSqDv09fQR/lg4zi05hxZ1C+SpcqQVpEEtqMWORtQv3LcguLi4\nIDExERcuXMDbb7+NwsJC3LlzB35+fvjoo496MyNRKyZDTLDp2U3IfCUTHxd+DM80T5z+/rTYsbqs\nqakJM2bM0HyD09fXh6urK1xdXfH888+3u8369ethb28PZ2dneHt74/LlywDuXsdz4cKFVmNjY2Px\n3nvvtdnHJ598AhsbG9jY2GD79u33zbd7927Y29vDwcEBr7zySnf/TI3nn38enp6erZ7buHEjPv30\n0wfeN/UQoQtaWlqEQ4cOCWFhYV3Z7IF1MSYNICq1SthWuE0YvW60sOjAIuGHn34QO1KnpaWlCe+9\n957m8dChQzvc5siRI8KtW7cEQRCETZs2CS+//LIgCILw5ptvCqtWrdKMU6lUgrm5uXD58uVW21+7\ndk2QyWRCfX29UF9fr/n51y5cuCC4uroKDQ0NgiAIwg8/PNj7Wl9fL0yYMEFwc3MTvv32W83z169f\nFzw8PB5o33R/Xf3s7NSFaUVFRThw4AD279+PGzdu4JlnntFulSLqJD2JHua5zENZVBkMpYawS7XD\nplOboFLrfnszPT0dzz33XJe2USgUGDx4MABgypQpqK6uBgDMmjULGRkZmnFHjx7FuHHjWq0nBtw9\nWcTX1xfGxsYwNjaGj48PlEplm9fZsmULoqOjYWRkBAAYMWJEmzFVVVWwtbVFWFgYJk2ahFdeeQWH\nDx/GE088ARsbG5w6dUoz9rPPPkNgYCBefPFF7Nq1S/P8sGHDYGJigtLS0i69D6QdHRaEsLAwLFiw\nAHv27MHBgwfx+eef4/PPP++NbESdZjzYGEn+Sciem430s+nw2OKBr698LXas+1KpVDh79ixsbH5e\nu+n27dt47LHH4Onp2WZl4PakpaUhICAAAODg4AA9PT0UFxcDAHbt2tXuRZ7ff/99qyVk2lt0EgAq\nKipw/vx5TJs2DZ6enjh06FC7GS5duoTXX38d5eXlOH/+PDIyMnD8+HGsW7cOa9as0YzbtWsXXn75\nZbz00ktIT09vtY/Jkyfj6NGjHf69pH0drmWUn5+P0tLSTi1WRyQ2J1Mn5M3LQ/rZdIT8Xwh8ZD5I\n9E6E6VBTsaO1UldX12YRx8uXL2PMmDGorKzE008/DUdHx/su5bJjxw4UFBTg/fff1zw3a9Ys7Nq1\nC/b29ti/fz/+9Kc/dTtfS0sLLl68iLy8PFy5cgVPPvkkSkpKNDOG/xo/fjzs7e9eSW5vbw9v77v3\n0HZwcNCcol5bW4uLFy/i8ccfBwA89NBDKC0t1WxnZmaGb7/9tttZqed0OEPw8PDAuXPneiMLUY+Q\nSCSY7Tgb5VHlGDlkJBw2OSDpRBJa1C1iR2tF+NXpgGPGjAFw90NWoVCgsLCw3e2ys7OxZs0aHDhw\nAAYGBprnQ0NDsXv3bmRnZ8PJyQkjR45ss21nFp0E7s4cAgMDoa+vDysrK9jY2ODixYttxg0aNEjz\ns56eHh566CHNzy0td9/v3bt348cff8T48eMxfvx4VFVVtZolCILAL5w6olMtI09PT9jY2MDR0RGO\njo5wcnLqjWxED2TYoGFY67sWR+cdxcELB+G62RV5VXlixwJwtyff2NioedzQ0ICmpiYAd2cPx48f\n13yD/qXCwkIsXrwYBw8ebNPXl8lkGDFiBP73f/+3VbuopqZG883d19cXhw8fRkNDA+rr6/Hll19i\n5syZbV7n+eef1yyjXFdXhwsXLnR74cn09HQcOnQIlZWVqKysxOnTp1sdR7h69SqsrKy6tW/qWR22\njBYsWIAdO3ZoepREfY18pBxfzvkSe8r2YM7eOZhmOQ3rfNfBbJiZaJn09fXh4OCA8+fPY9KkSSgr\nK0NERAT09PQ0Cz3a2toCABISEuDh4YFnn30W//M//4OffvoJISEhAIBx48Zh3759mv3OmjUL8fHx\nCA4O1jx39epVzZ0IH330Ubz99tvw8PDQ7NvY2Fjzs7u7OwIDAzFz5kwcPnwY9vb20NfXx7p16zB8\neNuLAH/9zf6XjyUSCb777jtcuXIFU6ZM0TxvZWUFIyMjnDp1Ch4eHjh58iTWrVv3QO8n9YwOF7fz\n9PTE11+Le3COVypTT/mp+Se888938OHpD7HiiRVY9vgyPKT/kChZ/vrXv6K2thYrVqzQ6uukpqZi\n3LhxePbZZ7X6Ot1x/fp1eHl5tTojiXpOj692umTJEjQ0NCAwMFDTH5RIJK2+gWgbCwL1tIprFVim\nXIbKhkok+yfDW+bd6xmam5vh7e2NvLy8AdtD37hxIx599FH8/ve/FztKv9TjBWHevHnt/mPdtm1b\n19N1EwsCaYMgCDh44SBilbFwG+OG9TPXw9LIUuxYRD1Gq/dDEAsLAmnTrTu38N7x95B8MhmvPf4a\nXp/6OgZJB3W8IZGO03pBSE1NxYgRI/DCCy9oDlRpGwsC9YbK+krEHY7D2X+fRZJfEgImBogdieiB\n9PgNcn5NEAQcO3YMv/vd77q6KZFOGz98PPa+vBfJ/smIVcYiKD0I39bzgikaONgyImpHU0sT1n+9\nHuu+Xodoj2ismLYCQwyGiB2LqEt6fIYQHx+P+vp6zeP6+nq89dZb3UtH1EcMkg5C/PR4nIk4g/Jr\n5bD/wB77yvfxiwn1ax3OEFxcXHDmzJlWz7m6ut73snpt4AyBxJbzbQ5ismJgaWSJjf4bYWNi0/FG\nRCLr8RmCWq3G7du3NY9v3bqF5ubm7qUj6qO8ZF4oWlwE3wm+mJo2FfHZ8Whsbux4Q6I+pMOC8Mor\nr8DLywtpaWn4+OOP4e3tjblz5/ZGNiKdYqBvgDjPOJRElqD6RjXkqXLsLt3N2Sv1G506qJyVlYXs\n7GxIJBL4+Pi0uxhWe5RKJWJjY6FSqbBw4cJ2L9HPzc3Fa6+9hjt37mDEiBGaBbVahWTLiHTQse+O\nITorGiaGJkj2T4b9qLaL0RGJSWcuTFOpVJg0aRKys7MxduxYeHh4ID09HXK5XDOmoaEBTzzxBA4d\nOgRzc3PU1dW1e2cmFgTSVS3qFnx4+kOsyluFuU5zkaBIwLHsM9i48TCamqQYNKgFS5f64plnnhQ7\nKg1AXf3svO+VZUOHDr3v+ioSiQTXr1//zR2fPHkS1tbWmmVtQ0NDsX///lYF4W9/+xteeOEFzXrs\n7RUDIl0m1ZMienI0XrJ/CfHZ8Rj/lwmQHpmKf2fvA3D3/59Ll/4AACwKpPPuewyhsbERN27caPe/\njooBcHcN9l/ez7W9W/VVVFTgxx9/xFNPPQV3d3d8+umnD/CnEIln1MOjkPZcGqy/eRb/ltUAYU8C\npkUAgEuXViM5+UuRExJ1TGtrT3Rm9cY7d+6goKAAOTk5uHnzJjw9PfH4449j4sSJbcauXLlS87NC\noYBCoejBtEQ9w/DaOGDvx4BbGjDHFyh9CTjyR9y+rS92NBoAcnNz2z0O21laKwiduVWfhYUFRowY\nAUNDQxgaGuLJJ59EUVFRhwWBSFcNGtQCCPrAN+HAuReAp98CouWo+5cH1IIaehLeZIq059dfllet\nWtWl7bX2r9Pd3R0VFRWoqqpCc3MzMjIyEBQU1GrMc889h3/+859QqVS4efMm8vPzYWdnp61IRFq3\ndKkvJky4e8wAt0yALzbBPC8ALc7fwjPNE6e/Py1uQKLfoLUZglQqRUpKCmbOnAmVSoUFCxZALpdj\n8+bNAICIiAjY2trCz88PTk5O0NPTw6JFi1gQqE/774Hj5OS3cfu2PgYPViEmZh78Az7G9qLtCEwP\nRKBNINZ4rcGIITyJgnQLF7cj6kUNtxuQcCQB6WfTsUqxCuGPhUNfj8cXSDt05jqEnsSCQP1NcW0x\nojOj0djciNSAVHhaeIodifohFgSiPkIQBKSfTccbX74BH5kPEr0TYTrUVOxY1I9o/QY5RNQzJBIJ\nZjvORnlUOUYOGQmHTQ5IOpGEFnWL2NFogOIMgUhHlP1QhpisGNT+VIsU/xTMsJohdiTq49gyIurD\nBEHAnrI9iDsUh2mW07DOdx3MhpmJHYv6KLaMiPowiUSCELsQlEWVQTZcBqdNTlh7fC2aVbwHCWkf\nZwhEOqziWgWWKZehsqESyf7J8JZ5ix2J+hC2jIj6GUEQcPDCQcQqY+E2xg3rZ66HpZGl2LGoD2DL\niKifkUgkCJoUhNIlpXAc5Qi3zW5YfXQ1mlqaxI5G/QxnCER9TGV9JeIOx+Hsv88iyS8JARMDxI5E\nOootI6IBQnlRiaVZS2E7whYb/DZANlwmdiTSMWwZEQ0QftZ+KIksgae5Jzy2eCDhSAJu3rkpdizq\nw1gQiPqwQdJBiJ8ejzMRZ1B+rRz2H9hjX/k+zqipW9gyIupHcr7NQUxWDCyNLLHRfyNsTGzEjkQi\nYsuIaADzknmhaHERfGQ+mJo2FfHZ8WhsbhQ7FvURLAhE/YyBvgGWT12OksgSVN+ohjxVjt2luznL\npg6xZUTUzx377hiis6JhYmiCZP9k2I+yFzsS9RK2jIiolenjpuOb8G8QLA+G4hMFlh9ajutN18WO\nRTqIBYFoAJDqSRE9ORqlS0rRcLsB8lQ5dhTv4MybWmHLiGgAyq/OR1RmFAwNDJHinwLn0c5iRyIt\nYMuIiDo0xXwK8hfmY47THPju8EVMZgzqb9WLHYtExoJANEDp6+kj/LFwnFtyDi3qFshT5dhauBVq\nQS12NBIJW0ZEBAAouFqAqMwoqAU1UgNS4W7mLnYkekA61TJSKpWwtbXFxIkTkZiYeN9xp06dglQq\nxWeffabNOET0G9zGuOH4/OOIdI9EYHogIg5GoO5mndixqBdprSCoVCpER0dDqVTi3LlzSE9PR1lZ\nWbvjVqxYAT8/P84CiESmJ9HDPJd5KIsqw2DpYNil2mHTqU1QqVViR6NeoLWCcPLkSVhbW8PKygoG\nBgYIDQ3F/v3724xLTk5GSEgIRo4cqa0oRNRFxoONkeSfhOy52Ug/mw6PLR74+srXYsciLdNaQaip\nqYGFhYXmsbm5OWpqatqM2b9/PyIjIwHc7XcRke5wMnVC3rw8vD71dYT8Xwjm7ZuH2sZasWORlki1\ntePOfLjHxsbi3Xff1Rz4+K2W0cqVKzU/KxQKKBSKHkhJRB2RSCSY7TgbgTaB+GPeH+GwyQFvTX8L\nUZOjINXT2kcIdUNubi5yc3O7vb3WzjI6ceIEVq5cCaVSCQB45513oKenhxUrVmjGyGQyTRGoq6vD\nkCFDsGXLFgQFBbUOybOMiHRG2Q9liMmKQe1PtUjxT8EMqxliR6L70JlbaLa0tGDSpEnIycmBmZkZ\nJk+ejPT0dMjl8nbHh4WFITAwEMHBwW1DsiAQ6RRBELCnbA/iDsVhmuU0rPNdB7NhZmLHol/RmdNO\npVIpUlJSMHPmTNjZ2eHll1+GXC7H5s2bsXnzZm29LBH1AolEghC7EJRFlUE2XAanTU5Ye3wtmlXN\nYkejB8AL04jogVVcq8Ay5TJUNlQi2T8Z3jJvsSMRdKhl1JNYEIh0nyAIOHjhIGKVsXAb44b1M9fD\n0shS7FgDms60jIhoYJFIJAiaFITSJaVwHOUIt81uWH10NZpamsSORp3EGQIRaUVlfSXiDsfh7L/P\nIskvCQETA8SONOCwZUREOkV5UYmlWUthO8IWG/w2QDZcJnakAYMtIyLSKX7WfiiJLIGnuScmb5mM\nhCMJuHkg4f34AAAPJElEQVTnptixqB0sCESkdYOkgxA/PR6FEYUov1YO+w/ssa98H2f+OoYtIyLq\ndTnf5iAmKwaWRpbY6L8RNiY2Ykfql9gyIiKd5yXzQtHiIvjIfDA1bSris+PR2NwodqwBjwWBiERh\noG+A5VOXoySyBNU3qiFPlWN36W52A0TElhER6YRj3x1DdFY0TAxNkOyfDPtR9mJH6vPYMiKiPmn6\nuOn4JvwbBMuDofhEgeWHluN603WxYw0oLAhEpDOkelJET45G6ZJSNNxugDxVjh3FO9gh6CVsGRGR\nzsqvzkdUZhQMDQyR4p8C59HOYkfqU9gyIqJ+Y4r5FOQvzMccpznw3eGLmMwY1N+qFztWv8WCQEQ6\nTV9PH+GPhePcknNoUbdAnirH1sKtUAtqsaP1O2wZEVGfUnC1AFGZUVALaqQGpMLdzF3sSDqLi9sR\nUb+nFtTYXrQd8TnxCLIJwmqv1RgxZITYsXQOjyEQUb+nJ9HDPJd5KIsqw2DpYNil2uHD0x9CpVaJ\nHa1P4wyBiPq84tpiRGdGo7G5EakBqfC08BQ7kk5gy4iIBiRBEJB+Nh1vfPkGfGQ+SPROhOlQU7Fj\niYotIyIakCQSCWY7zkZZVBlGDhkJh00OSDqRhBZ1i9jR+gzOEIioXyr7oQwxWTGo/akWKf4pmGE1\nQ+xIvY4tIyKiewRBwJ6yPYg7FIdpltOwzncdzIaZiR2r1+hcy0ipVMLW1hYTJ05EYmJim9/v3LkT\nzs7OcHJywhNPPIHi4mJtRyKiAUIikSDELgRlUWWQDZfBaZMT1h5fi2ZVs9jRdJJWZwgqlQqTJk1C\ndnY2xo4dCw8PD6Snp0Mul2vGfP3117Czs4ORkRGUSiVWrlyJEydOtA7JGQIR9YCKaxVYplyGyoZK\nJPsnw1vmLXYkrdKpGcLJkydhbW0NKysrGBgYIDQ0FPv37281xtPTE0ZGRgCAKVOmoLq6WpuRiGgA\nm2gyEV/M/gKJ3okIPxiOkN0huPyfy2LH0hlaLQg1NTWwsLDQPDY3N0dNTc19x6elpSEgIECbkYho\ngJNIJAiaFITSJaVwHOUIt81uWH10NZpamsSOJjqpNncukUg6PfbIkSPYunUrjh8/3u7vV65cqflZ\noVBAoVA8YDoiGsgMDQyRoEjAXOe5iDscd/c0Vb8kBEzsu19Kc3NzkZub2+3ttXoM4cSJE1i5ciWU\nSiUA4J133oGenh5WrFjRalxxcTGCg4OhVCphbW3dNiSPIRCRlikvKrE0aylsR9hig98GyIbLxI70\nwHTqGIK7uzsqKipQVVWF5uZmZGRkICgoqNWYy5cvIzg4GDt27Gi3GBAR9QY/az+URJbA09wTk7dM\nRsKRBNy6c0vsWL1K69chZGVlITY2FiqVCgsWLEB8fDw2b94MAIiIiMDChQuxd+9eWFpaAgAMDAxw\n8uTJ1iE5QyCiXnTlP1fw+pev42TNSbw/8308N+m5LrXAdQUvTCMi6iE53+YgJisGlkaW2Oi/ETYm\nNmJH6hKdahkREfVlXjIvFC0ugo/MB1PTpiI+Ox6NzY1ix9IaFgQiot9goG+A5VOXoySyBNU3qiFP\nlWN36e5+2bVgy4iIqAuOfXcM0VnRMDE0QbJ/MuxH2Ysd6b7YMiIi0qLp46bjm/BvECwPhuITBZYf\nWo7rTdfFjtUjWBCIiLpIqidF9ORolC4pRcPtBshT5dhRvKPPdzLYMiIiekD51fmIyoyCoYEhUvxT\n4DzaWexIANgyIiLqdVPMpyB/YT7mOM2B7w5fxGTGoP5WvdixuowFgYioB+jr6SP8sXCcW3IOLeoW\nyFPl2Fq4FWpBLXa0TmPLiIhICwquFiAqMwpqQY3UgFS4m7n3egZeqUxEpCPUghrbi7YjPiceQTZB\nWO21GiOGjOi11+cxBCIiHaEn0cM8l3koiyrDYOlg2KXa4cPTH0KlVokdrV2cIRAR9ZLi2mJEZ0aj\nsbkRqQGp8LTw1OrrsWVERKTDBEFA+tl0vPHlG/CR+SDROxGmQ0218lpsGRER6TCJRILZjrNRFlWG\nkUNG3r1T24kktKhbxI7GGQIRkZjKfihDTFYMan+qRYp/CmZYzeixfbNlRETUxwiCgD1lexB3KA7T\nLKdhne86mA0ze+D9smVERNTHSCQShNiFoCyqDLLhMjhtcsLa42vRrGru3RycIRAR6ZaKaxVYplyG\nyoZKJPsnw1vm3a39sGVERNQPCIKAgxcOIlYZC7cxblg/cz0sjSy7tA+2jIiI+gGJRIKgSUEoXVIK\nx1GOcNvshtVHV6OppUl7r8kZAhGR7qusr0Tc4Tic/fdZJPklIWBiQIfbsGVERNSPKS8qsTRrKWxH\n2GKD3wbIhsvuO1anWkZKpRK2traYOHEiEhMT2x2zdOlSTJw4Ec7OzigsLNRmHCKiPs/P2g8lkSXw\nNPfE5C2TkXAkAbfu3OqRfWutIKhUKkRHR0OpVOLcuXNIT09HWVlZqzGZmZm4ePEiKioq8NFHHyEy\nMlJbcfqN3NxcsSPoDL4XP+N78bOB8F4Mkg5C/PR4FEYUovxaOew+sMO+8n0P3EnRWkE4efIkrK2t\nYWVlBQMDA4SGhmL//v2txhw4cACvvvoqAGDKlCloaGhAbW2ttiL1CwPhH3tn8b34Gd+Lnw2k98LC\nyAIZIRn4OPBjvJnzJgL+FoAL1y50e39aKwg1NTWwsLDQPDY3N0dNTU2HY6qrq7UViYioX/KSeaFo\ncRG8x3tjatpUxGfHo7G5scv70VpBkEgknRr36ylOZ7cjIqKfGegbYPnU5SiJLEH1jWrIU+Vd3odU\nC7kAAGPHjsWVK1c0j69cuQJzc/PfHFNdXY2xY8e22deECRNYKH5h1apVYkfQGXwvfsb34md8L+6a\nMGFCl8ZrrSC4u7ujoqICVVVVMDMzQ0ZGBtLT01uNCQoKQkpKCkJDQ3HixAkYGxvD1LTtuuAXL17U\nVkwiIrpHawVBKpUiJSUFM2fOhEqlwoIFCyCXy7F582YAQEREBAICApCZmQlra2s8/PDD2LZtm7bi\nEBFRB/rEhWlERKR9Or2WUWcubBsorly5gqeeegr29vZwcHDAxo0bxY4kKpVKBVdXVwQGBoodRVQN\nDQ0ICQmBXC6HnZ0dTpw4IXYk0bzzzjuwt7eHo6MjZs+ejaYm7a35o2vmz58PU1NTODo6ap778ccf\n4ePjAxsbG/j6+qKhoaHD/ehsQejMhW0DiYGBAd5//32UlpbixIkTSE1NHdDvR1JSEuzs7Ab8yQbL\nli1DQEAAysrKUFxcDLm862eW9AdVVVXYsmULCgoKUFJSApVKhV27dokdq9eEhYVBqVS2eu7dd9+F\nj48PLly4AC8vL7z77rsd7kdnC0JnLmwbSEaPHg0XFxcAwNChQyGXy/H999+LnEoc1dXVyMzMxMKF\nCwf0Glf/+c9/cOzYMcyfPx/A3eN2RkZGIqcSxyOPPAIDAwPcvHkTLS0tuHnzZrtnLPZX06dPx/Dh\nw1s998sLf1999VXs27evw/3obEHozIVtA1VVVRUKCwsxZcoUsaOI4rXXXsPatWuhp6ez/3x7RWVl\nJUaOHImwsDC4ublh0aJFuHnzptixRPHoo49i+fLlsLS0hJmZGYyNjeHt3b2byvQXtbW1mrM2TU1N\nO7UKhM7+HzXQWwH309jYiJCQECQlJWHo0KFix+l1n3/+OUaNGgVXV9cBPTsAgJaWFhQUFGDJkiUo\nKCjAww8/3Km2QH906dIlbNiwAVVVVfj+++/R2NiInTt3ih1LZ0gkkk59pupsQejMhW0DzZ07d/DC\nCy/g97//PZ5//nmx44jiq6++woEDBzB+/HjMmjUL//jHPzB37lyxY4nC3Nwc5ubm8PDwAACEhISg\noKBA5FTiOH36NKZOnQoTExNIpVIEBwfjq6++EjuWqExNTfGvf/0LAHD16lWMGjWqw210tiD88sK2\n5uZmZGRkICgoSOxYohEEAQsWLICdnR1iY2PFjiOaNWvW4MqVK6isrMSuXbvw9NNPY/v27WLHEsXo\n0aNhYWGBCxfuLmaWnZ0Ne3t7kVOJw9bWFidOnMCtW7cgCAKys7NhZ2cndixRBQUF4ZNPPgEAfPLJ\nJ537EinosMzMTMHGxkaYMGGCsGbNGrHjiOrYsWOCRCIRnJ2dBRcXF8HFxUXIysoSO5aocnNzhcDA\nQLFjiOrMmTOCu7u74OTkJPzud78TGhoaxI4kmsTERMHOzk5wcHAQ5s6dKzQ3N4sdqdeEhoYKY8aM\nEQwMDARzc3Nh69atwrVr1wQvLy9h4sSJgo+Pj1BfX9/hfnhhGhERAdDhlhEREfUuFgQiIgLAgkBE\nRPewIBAREQAWBCIiuocFgYiIALAgEAEAnn76aRw+fLjVcxs2bMCSJUu6tb+qqqpWa3H9l4uLC06d\nOtWtfRJpGwsCEYBZs2a1WS45IyMDs2fP7tb+rKysYGlpiaNHj2qeKy8vR2Njo2apCSJdw4JABOCF\nF17AF198gZaWFgDQLJI2bdo0JCYmwsnJCS4uLoiPjwdwdzE1f39/uLu748knn8T58+fb7PPXRWbX\nrl2YNWtW7/xBRN3AK5WJ7gkMDMSiRYsQFBSEd999Fz/++COeeuop/PnPf0ZOTg4GDx6MhoYGGBsb\nw8vLC5s3b4a1tTXy8/Px5ptvIicnp9X+amtr4erqiurqaujp6cHOzg5///vfB/waO6S7pGIHINIV\n//1GHxQUhIyMDGzduhU7d+7E/PnzMXjwYACAsbExGhsb8fXXX+PFF1/UbNvc3Nxmf6ampnBwcEB2\ndjZGjRoFqVTKYkA6jQWB6J6goCC89tprKCwsxM2bN+Hq6oqdO3e2ue+CWq2GsbExCgsLO9znf4uM\nqalpt49HEPUWHkMgumfo0KF46qmnEBYWpvnw9vHxwbZt23Dr1i0AQH19PR555BGMHz8ef//73wHc\nXZq8uLgYALB37168+eabmn0GBwfjiy++QEZGBkJDQ3v5LyLqGhYEol+YNWsWSkpKNAd/Z86ciaCg\nILi7u8PV1RV/+ctfAAA7d+5EWloaXFxc4ODggAMHDgC4e7D5l/c1NjIywtSpUzF69GhYWVn1+t9D\n1BU8qEzUg+bMmYMNGzbAxMRE7ChEXcaCQEREANgyIiKie1gQiIgIAAsCERHdw4JAREQAWBCIiOge\nFgQiIgLAgkBERPf8PzB3vekNwU7EAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7a67da0>"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.14 page No. 232"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Vcc=12 \t\t#in Volt collector supply voltage\n",
"Ic=1.2 #A, collector current\n",
"Rl=5 #kohm load resistance\n",
"\n",
"Vce=Vcc-Ic*Rl #Collector emitter voltage\n",
"Rl1=7.5\n",
"Vce1=Vcc-Ic*Rl1\n",
"\n",
"print\"Operating point at load resistance 5 kohm is (\",Vce,\"V,\",Ic,\"mA)\"\n",
"print\"Operating point at load resistance 7.5 kohm is (\",Vce1,\"V,\",Ic,\"mA)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Operating point at load resistance 5 kohm is ( 6.0 V, 1.2 mA)\n",
"Operating point at load resistance 7.5 kohm is ( 3.0 V, 1.2 mA)\n"
]
}
],
"prompt_number": 65
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.15 Page No.233"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Vcc=20 # V, collector voltage\n",
"Rc=3.3*10**3\n",
"\n",
"Ic=0 #for cut off point\n",
"Vce=Vcc\n",
"Ic=Vcc/Rc\n",
"print \"Collector to emitter voltage is (Vce)\",Vce,\"V\"\n",
"print \"Collector current at saturation point is (Ic)\",round(Ic*1000,0),\"mA\"\n",
"\n",
"import matplotlib.pyplot as plt\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"\n",
"Vce=[0,20]\n",
"Ic=[6,0]\n",
"xlabel(\"Vce (V)\") \n",
"ylabel(\"Ic (mA)\") \n",
"plt.xlim((0,25))\n",
"plt.ylim((0,8))\n",
"ax.plot([0], [6], 'o')\n",
"ax.annotate('(0,6mA)', xy=(0,6))\n",
"\n",
"ax.plot([20], [0], 'o')\n",
"ax.annotate('(20V,0)', xy=(20,0))\n",
"a=plot(Vce,Ic)\n",
"show(a)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Collector to emitter voltage is (Vce) 20 V\n",
"Collector current at saturation point is (Ic) 6.0 mA\n"
]
},
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEMCAYAAAAlGRZyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHwFJREFUeJzt3XtUVXX+//HnUYz5Nl4wL4iiYiYJgoA30sk8pmaWIt4K\nbbLEpoZZzWjfGs2mXzGXb5PLLqPW1Hcab2kLdaaJLJG81EmLHELJNEvNoEHDvmkYEgkC+/cHcQRB\n7vvc9uux1lkD52z2+3P22vPu4/u9P3vbDMMwEBERn9bG3QMQERHzKdmLiFiAkr2IiAUo2YuIWICS\nvYiIBSjZi4hYgKnJ/s9//jODBg0iMjKSOXPmUFJSYmY4ERG5DNOSfW5uLi+99BL79+/n4MGDlJeX\ns3HjRrPCiYhIPfzM2nHHjh1p164dxcXFtG3bluLiYnr16mVWOBERqYdpM/urrrqKBx98kD59+tCz\nZ08CAgIYP368WeFERKQ+hkk+//xzIywszDh9+rRx4cIFIz4+3tiwYUONbQC99NJLL72a8Woq02b2\nWVlZjBo1ii5duuDn58f06dPJyMiotZ1hGHoZBo8//rjbx+ApLx0LHQsdi/pfzWFash84cCB79+7l\nhx9+wDAMdu7cSXh4uFnhRESkHqYl+6ioKObOncuwYcMYPHgwAPfee69Z4UREpB6mXY0DsGjRIhYt\nWmRmCJ9ht9vdPQSPoWNxkY7FRToWLWMzmlsAao3gNluz608iIlbVnNyp2yWIiFiAkr2IiAUo2YuI\nWICSvYiIBSjZi4hYgJK9iIgFKNmLiFiAkr2IiAUo2YuIWICSvYiIBSjZi4hYgJK9iIgFKNmLiFiA\nkr2IiAUo2YuIWICSvYiIBSjZi4hYgJK9iIgFmJrsjxw5QkxMjPPVqVMnVqxYYWZIERGpg8ueQVtR\nUUGvXr3IzMykd+/elcH1DFoRkSbz6GfQ7ty5k/79+zsTvYiIuI7Lkv3GjRuZM2eOq8KJiEg1fq4I\nUlpayhtvvMHSpUtrfZacnOz82W63Y7fbXTEkERGv4XA4cDgcLdqHS2r2r7/+Oi+88ALp6ek1g6tm\nLyLSZB5bs09JSWH27NmuCCUiInUwfWb//fff07dvX3JycujQoUPN4JrZi4g0WXNyp8suvawzuJK9\niEiTeWwZR0RE3EvJXkTEApTsRUQsQMleRMQClOxFRCxAyV5ExAKU7EVELEDJXkTEApTsRUQsQMle\nRMQClOxFRCxAyV5ExAKU7EVELEDJXkTEApTsRUQswO3JvqSkhDFjxlBRUcG6desIDQ0lNDSUl19+\n+bJ/s3LlSsLCwoiIiGDx4sVNjllWVka3bt1YsmRJjfdvu+02cnJymrw/ERFP5/aHl6xatYozZ84w\nf/58hg8fzr59+wAYOnQo+/btIyAgoMbfvPPOOzzxxBOkpaXRrl07vvnmG7p169akuNu2bWP58uV8\n8cUXHD161Pn+jh07eOONN1ixYkXLv5yIiEm88uElKSkpTJ06lbfeeoubbrqJgIAAAgICmDBhQq0H\nlAO88MILLFmyhHbt2gE4E/3atWuJj4/npptuol+/fjz33HM89dRTDBkyhJEjR1JQUODcx8aNG0lK\nSuLqq6/mgw8+cL5vt9tJS0sz+RuLiLie25P9oUOHCA0N5eTJkwQHBzvfDw4O5uTJk7W2P3bsGLt3\n7+a6667DbreTlZXl/OyTTz7htdde48MPP+R3v/sdHTt2ZP/+/YwcOdJZFjp//jxvv/02kyZN4rbb\nbiMlJcX59+3ataNXr158+umnJn5jERHXMzXZnz17lpkzZxIWFkZ4eDh79+6ttU1hYSlbt+7GZrM1\nap9lZWUUFBSwd+9eli1bxm233eb8bOzYsfz0pz+la9euBAQEMGXKFAAiIyPJzc0F4M0338Rut3PF\nFVcQHx9PampqjX8O9ezZ07mtiIivMDXZL1iwgFtuuYVPP/2Ujz/+mLCwsFrbFBdfxYIFb/F//1dI\nXl6e8/28vLwaM/0qwcHBTJ8+HYDhw4fTpk0bTp8+jc1mw9/f37ldmzZtnL+3adOGsrIyoLJstGPH\nDvr168fQoUP59ttv2bVrl/PvDMOgTRu3/4NHRKRVmZbVvvvuO/bs2UNiYiIAfn5+dOrUqY4tizh+\n/H/Iyvqe7du3c/bsWQoKCtixYwcTJ04EYMmSJaSmpgIQHx/P22+/DcDRo0e5cOECXbt2rbdZUfVZ\nYWEh7733Hnl5eeTk5JCTk8Nzzz1Xo5STn59P3759W+MQiIh4DD+zdpyTk0O3bt2YN28eBw4cYOjQ\noSxfvpwrr7yyxnZdKKaQ+zh+/Ai33z6L4cOHA/D44487r8Q5dOgQ8fHxACQmJpKYmEhkZCRXXHEF\n69atAyq709VLQXX9nJqayrhx45zNXYC4uDgWLVrEhQsXADhx4gQDBw5s7cMhItJsDocDh8PRon2Y\ndullVlYWI0eOJCMjg+HDh7Nw4UI6duzIH/7wh4vBbTYSuZ7ufMxPoifyePbmOvd1880313llTmvb\nvn07W7duZfny5abHEhFpLo+69DI4OJjg4GDnTH3mzJns37+/1nar2cWqK/z572/2Qnw8VKvbV3FF\nogf4+9//zgMPPOCSWCIirmRasu/Rowe9e/d2LlrauXMngwYNqrXdxIl/ZM2//kmH48dgyBCIiYG/\n/AV+bKi60ubNmwkJCXF5XBERs5m6gvbAgQPcc889lJaW0r9/f9asWVOjSVvnP0WOHoVf/hK++w7+\n9jcYOtSs4YmIeKXmlHHcfruEOsMbBqxfD4sWQUIC/PGP0KGD6wcoIuKBPKpm3yI2G8ydC4cOQWEh\nhIfDj5deiohI03nmzP5SDkdlaWfgQFi5Enr3Nn1sIiKeyndm9pey2+HAAbc3cEVEvJV3zOyrUwNX\nRCzOd2f21YWGwq5dsGAB3HorLFwI5865e1QiIh7N+5I9qIErItJE3lfGqYsauCJiIdYo49RFDVwR\nkXr5xsy+OjVwRcTHWXdmX50auCIitfhesgc1cEVELuF7ZZy6qIErIj5EZZzLUQNXRCzOGjP76tTA\nFREvp5l9Y6iBKyIWZL1kD2rgiojlWK+MUxc1cEXEi6iM01xq4IqIj9PM/lJq4IqIh/PIZ9CGhITQ\nsWNH2rZtS7t27cjMzLwY3BOTPegZuCLi0TyyjGOz2XA4HGRnZ9dI9B5NDVwR8TEuqdl75Oy9Mbp2\nhdWrK2f5Dz8M8fGQl+fuUYmINJmf2QFsNhvjx4+nbdu23HffffziF7+o8XlycrLzZ7vdjt1uN3tI\nTVfVwF26tLKB++ijcP/94Gf64RMRweFw4HA4WrQP02v2+fn5BAUF8c033zBhwgRWrlzJ6NGjK4N7\nas2+PmrgioibeWTNPigoCIBu3boxbdo076nbX45W4IqIFzI12RcXF3Pux0T4/fffs337diIjI80M\n6Rpq4IqIlzG1jJOTk8O0adMAKCsr44477mDJkiUXg3tjGacuWoErIi7kkdfZ1xvcV5I9QElJZQN3\nxQo1cEXEVEr2nkANXBExmUc2aC1HDVwR8UBK9mZQA1dEPIzKOK6gBq6ItCJTyzjnz5+npKSkyYMS\ndAtlEXG7y87sKyoqSE1NJSUlhYyMDCoqKjAMg7Zt2zJy5EjuuOMO4uPjsdlszQ9ulZl9dWrgikgL\nterVODfccAOjR48mLi6O6Oho/P39ASgpKSE7O5stW7bw3nvvsXv3bpcO2CfoFsoi0gKtmuxLSkqc\nCf5yGrNNvcGtmuyrnD5dmfB37Kis5cfHu3tEIuIFWrVmX1cSLyoqYv369dx6662X3UaaQLdQFhEX\nabBBW1JSwr/+9S9mzZpFz5492bVrF7/85S9dMTbrUANXREx22TLOW2+9RUpKCm+//TZ2u51Zs2bx\n61//mtzc3NYLbvUyTl3UwBWRBrRqzb5NmzZMnjyZF198kZ49ewLQr18/cnJyWj7SquBK9nVTA1dE\n6tGqNfv9+/cTFhbGmDFjuPnmm1m1ahXl5eUtHqQ0glbgikgra3AFrWEYZGRkkJKSwquvvkpUVBTT\np0/n3nvvbXlwzewbRytwRaQa0+96WV5ezq5du9i4cSOrV69u8gBrBVeybzzdQllEfmRasj9w4ABf\nfvklZWVlzgAzZsxo3iirB1eybzo1cEUsz5RkP2/ePA4ePMigQYNo0+ZiiX/NmjXNG2X14Er2zaMG\nroilmZLsw8PD+eSTT1p0D5zLBleybxmtwBWxJFPuejl8+HAOHz7c7EGJibQCV0QaqcFkP2/ePEaO\nHEloaCiRkZFERkYyePDgRgcoLy8nJiaGKVOmtGigUg+twBWRBjRYxunfvz/PPvssERERNWr2ISEh\njQrwzDPPsG/fPs6dO8eWLVtqBlcZp/WpgSvi80wp43Tv3p24uDiuvvpqQkJCnK/GOHHiBGlpadxz\nzz1K6q6iZ+CKSB0avFA7JiaGOXPmMGXKFK644gqg8r8q06dPb3DnDzzwAMuWLaOwsPCy2yQnJzt/\nttvt2O32hkct9atagXvLLZUN3PBwNXBFvJjD4cDhcLRoHw2Wce6+++46r8Rp6NLLN998k23btvH8\n88/jcDh4+umneeONN2oGVxnHNd59F+67TytwRXyE6Stom+KRRx5h/fr1+Pn5cf78eQoLC5kxYwYv\nv/zyxeBK9q6jFbgiPqNVk31ycjJJSUkEBgbW+Yf5+fm8+OKL/P73v28wyLvvvstTTz2lmb0nUANX\nxOs1J3dedmo3bNgwEhISKC0tZciQIQQFBWEYBqdOnWL//v34+/vz0EMPNWlw4gGqGrjr11c2cLUC\nV8QSGizj5OXl8f777/Of//wHgL59+/Kzn/2M4ODglgfXzN69tAJXxCt5VM2+UcGV7D2DGrgiXsWU\n6+zFAsaM0QpcER+nmb3UpAauiMfTzF5aTitwRXySkr3UpmfgivgclXGkYWrgingUlXHEHGrgini9\nBpP9kiVLKCgocP5eUFDAo48+auqgxAP5+8Njj0FGBmzZArGxsG+fu0clIo3UYLLftm0bnTt3dv7e\nuXNntm7dauqgxIOpgSvilRpM9hUVFZw/f975+w8//EBpaampgxIPpwauiNdp8LaHd9xxB+PGjSMx\nMRHDMFizZg1z5851xdjE01U9A7eqgbt2rRq4Ih6qUVfjbNu2jZ07d2Kz2ZgwYQITJ05sneC6Gsd3\n6BbKIi6je+OI+2kFrojpWjXZt2/f/rK3JbbZbPU+arDRwZXsfZNhVN5CedEi3UJZxASa2Ytn0S2U\nRUyhZC+eSStwRVqVVtCKZ9IKXBG308xeXEsNXJEW08xePJ9W4Iq4hanJ/vz588TGxhIdHU14eDhL\nliwxM5x4C63AFXE508s4xcXFXHnllZSVlXH99dfz1FNPcf3111cGVxlHQA1ckSbyyDLOlVdeCUBp\naSnl5eVcddVVZocUb6MGrojpTF/PXlFRwZAhQzh+/DhJSUmEh4fX+Dw5Odn5s91ux263mz0k8URV\nt1BOSKhs4K5frwauyI8cDgcOh6NF+3DZ1TjfffcdEydO5Mknn3QmdJVxpE5agStSL48s41Tp1KkT\nt956K1lZWa4KKd5KDVyRVmdqsj99+jRnz54FKu+Dv2PHDmJiYswMKb6k6hbKGzbAww9X3m4hL8/d\noxLxSqYm+/z8fG688Uaio6OJjY1lypQpjBs3zsyQ4ovUwBVpMa2gFe+iFbginl2zF2kVWoEr0ixK\n9uJ91MAVaTKVccT7aQWuWIzKOGJNauCKNEgze/EtauCKBWhmL6IGrkidlOzF96iBK1KLyjji+9TA\nFR+jMo5IXdTAFdHMXixGDVzxAZrZizREDVyxKCV7sR41cMWCVMYRUQNXvIzKOCLNoQauWIBm9iLV\nVW/g/u//wrBh7h6RSC2a2Yu0VPUG7uTJlf+rBq74ACV7kUtVb+CeO6cGrvgElXFEGqIGrngYlXFE\nzKAGrvgAU5N9Xl4eY8eOZdCgQURERLBixQozw4mYx98fHnsMMjJgyxaIjYWsLHePSqTRTC3jnDp1\nilOnThEdHU1RURFDhw4lNTWVsLCwyuAq44g3MgxYvx4WLYLbb4c//Qk6dHD3qMRCPK6M06NHD6Kj\nowFo3749YWFhfPXVV2aGFDGfGrjihfxcFSg3N5fs7GxiY2NrvJ+cnOz82W63Y7fbXTUkkZbp2hVW\nr77YwF27Vg1cMYXD4cDhcLRoHy65GqeoqAi73c6jjz5KfHz8xeAq44ivKCmBpUthxQp49FG4/37w\nc9lcSiymObnT9GR/4cIFJk+ezKRJk1i4cGHN4Er24muOHoWkJDh7VitwxTQel+wNw+Cuu+6iS5cu\nPPvss7WDK9mLL1IDV0zmcQ3a999/nw0bNvDOO+8QExNDTEwM6enpZoYUcT81cMUDaQWtiNm0Alda\nmcfN7EUErcAVj6CZvYgrqYErrUAzexFPFxoKO3fqFsrickr2Iq6mBq64gco4Iu6mBq40kco4It5I\nDVxxAc3sRTyJGrjSCJrZi3g7NXDFJEr2Ip5GDVwxgco4Ip5ODVy5hMo4Ir5IDVxpBZrZi3gTNXAF\nzexFfJ8auNJMSvYi3kYNXGkGlXFEvJ0auJajMo6IFamBK42gmb2IL1ED1xI0sxexOjVw5TJMTfaJ\niYkEBgYSGRlpZhgRqU4NXKmDqWWcPXv20L59e+bOncvBgwdrB1cZR8R8VQ3ca6+tbOD26ePuEUkL\neVwZZ/To0XTu3NnMECLSkKoG7tChlU3cZ59VA9eCVLMXsQJ/f3jsMcjIgDffhNhYyMpy96jEhfzc\nPYDk5GTnz3a7Hbvd7raxiPi8qgbu+vWVDdzbb4c//Qk6dHD3yKQeDocDh8PRon2Yfullbm4uU6ZM\nUc1exNOcPg2LFsGOHZW1/Ph4d49IGsnjavYi4sG6doXVq2HDBnj4YZg6Ff7zH3ePSkxiarKfPXs2\no0aN4ujRo/Tu3Zs1a9aYGU5EmkMNXEvQCloRuUgrcL2Cyjgi0jJageuzlOxFpCatwPVJKuOISP20\nAtfjqIwjIq1PDVyfoJm9iDSeGrgeQTN7ETGXGrheS8leRJpGDVyvpDKOiLSMGrgupzKOiLieGrhe\nQTN7EWk9auC6hGb2IuJeauB6LCV7EWldauB6JJVxRMRcauC2OpVxRMTzqIHrETSzFxHXUQO3VWhm\nLyKerYUN3JKSEsaMGcP+/fsZOXIkERERREVFsXnzZuc2OTk5xMbGMmDAABISErhw4QK5ubn07t27\n1v6io6P58MMPa73/m9/8hgEDBhAVFUV2drYz9g033EBFRUUzvrj7KdmLiGu1oIH7yiuvMHnyZDp0\n6MCGDRs4dOgQ6enpLFy4kMLCQgAWL17Mgw8+yLFjx+jcuTOrVq0iJCSEPn36sHv3bue+PvvsM4qK\nihg+fHiNGGlpaXz++eccO3aMv/3tbyQlJQHg7+/P6NGjSfXSZrOSvYi4RzOegZuSksLUqVMZMGAA\n/fv3ByAoKIju3bvzzTffYBgG77zzDjNnzgTgrrvucibn2bNns3HjRue+Nm7cyOzZs2vF2LJlC3fd\ndRcAsbGxnD17lq+//hqAuLg4UlJSWv7d3UDJXkTcq5EN3PLycg4dOkRoaGiN9zMzMyktLaV///6c\nOXOGgIAA2rSpTG29evXi5MmTAMyaNYvU1FRnGWbz5s11JvuTJ0/WKPkEBwdz4sQJoLLsk5GR0Trf\n28VMTfbp6ekMHDiQAQMGsHTpUjNDeT2Hw+HuIXgMHYuLLHMs/P3hsccgIwPefBNiYyErq8Ymr7/+\nOh06dKjxXn5+PnPnzmXt2rUNhggMDCQiIoKdO3fy0Ucf4efnR3h4eJ3bXtr8tNlsPw7Tn4qKCs6f\nP9+EL+cZTEv25eXl3H///aSnp3P48GFSUlL49NNPzQrn9Szzf+pG0LG4yHLHoo4Gbvrr/2DivIks\n+H8LOHnqJFt3bAWgsLCQyZMn88QTTzBixAgAunTpwtmzZ52z9xMnTtCrVy/n7qtKOZs2bWLOnDl1\nDqFXr17k5eU5f790H4ZhOJO/NzEt2WdmZnLNNdcQEhJCu3btSEhI4PXXXzcrnIj4imoN3Lwjh4lK\nmM1/nd/OiW4nKDaKWfD8AlLTUpk2bRpz585l+vTp1f7UxtixY/nHP/4BwLp164iPj3d+Pn36dLZu\n3cqmTZtISEhwvv/aa6/xyCOPAJV1+ZdffhmAvXv3EhAQQGBgIFB5RU7btm3x9/c3/TC0NtOSfV11\nr6ramYhIg7p25Z6gNiQklPPnnTDzMNAdjvc+zmNLH2PPnj2sXbuWmJgYYmJi+PjjjwFYunQpzzzz\nDAMGDKCgoID58+c7d9mpUydGjRpFjx49CAkJcb5//PhxOnXqBMAtt9zC1VdfzTXXXMN9993HX//6\nV+d22dnZjBw50iVfv7WZtqjq1VdfJT09nZdeegmADRs28O9//5uVK1deDO6F/xQSEfEETU3dfiaN\no1bdKy8vj+Dg4BrbaPWsiDRFaWkp48eP591333X5ZLGkpIQJEya4JXZrMG1mX1ZWxrXXXsuuXbvo\n2bMnI0aMICUlhbCwMDPCiYhIPUyb2fv5+fHcc88xceJEysvLmT9/vhK9iIibmHqd/aRJkzhy5Aif\nf/45S5YsqfGZrsG/KCQkhMGDBxMTE+O8hMwqEhMTCQwMJDIy0vnet99+y4QJEwgNDeWmm27i7Nmz\nbhyh69R1LJKTkwkODnY2IdPT0904QtfJy8tj7NixDBo0iIiICFasWAFY89y43LFo8rlhuEFZWZnR\nv39/IycnxygtLTWioqKMw4cPu2MoHiEkJMQ4c+aMu4fhFrt37zb2799vREREON/77W9/ayxdutQw\nDMN48sknjcWLF7treC5V17FITk42nn76aTeOyj3y8/ON7OxswzAM49y5c0ZoaKhx+PBhS54blzsW\nTT033HK7BF2DX5th0Wb16NGj6dy5c433qt+bpPq9TXxdXccCrHlu9OjRg+joaADat29PWFgYJ0+e\ntOS5cbljAU07N9yS7HUNfk02m43x48czbNgw56WqVvb11187F7EEBgY6b0JlVStXriQqKor58+db\nomxxqdzcXLKzs4mNjbX8uVF1LK677jqgaeeGW5K9N162ZKb333+f7Oxstm3bxvPPP8+ePXvcPSSP\nYbPZLH2+JCUlkZOTw0cffURQUBAPPvigu4fkUkVFRcyYMYPly5fXui+O1c6NoqIiZs6cyfLly2nf\nvn2Tzw23JPvGXINvJUFBQQB069aNadOmkZmZ6eYRuVdgYCCnTp0CKm901b17dzePyH26d+/uTGr3\n3HOPpc6NCxcuMGPGDO68807nLQ+sem5UHYuf//znzmPR1HPDLcl+2LBhHDt2jNzcXEpLS9m0aRNx\ncXHuGIrbFRcXc+7HJ/V8//33bN++vcbVGFYUFxfHunXrgNr3NrGa/Px858+vvfaaZc4NwzCYP38+\n4eHhLFy40Pm+Fc+Nyx2LJp8bJjSPGyUtLc0IDQ01+vfvbzzxxBPuGobbffHFF0ZUVJQRFRVlDBo0\nyHLHIiEhwQgKCjLatWtnBAcHG6tXrzbOnDljjBs3zhgwYIAxYcIEo6CgwN3DdIlLj8WqVauMO++8\n04iMjDQGDx5sTJ061Th16pS7h+kSe/bsMWw2mxEVFWVER0cb0dHRxrZt2yx5btR1LNLS0pp8brj1\ngeMiIuIaelKViIgFKNmLiFiAkr2IiAUo2YuIWICSvfiUG2+8ke3bt9d47y9/+Qu/+tWvWjXOwYMH\nSUxM5Msvv6yxGrxKdHQ0mZmZrFixgvXr17dqbJHmULIXn1L1QOnq6nu4dHMtW7aMpKQk+vbtS58+\nfdi9e7fzs88++4yioiJGjBjBvHnzajydTcRdlOzFp8yYMYOtW7dSVlYGVN5L5KuvvuL6668HKp9P\nOnjwYKKjo5233T5+/DiTJk1i2LBh3HDDDRw5cqTeGCUlJezdu5fhw4cDtf8Ds3HjRmbPng1Ahw4d\n6NKlC5988kmrf1eRplCyF59y1VVXMWLECNLS0oDKxHv77bcDsG3bNrZs2UJmZiYfffQRixcvBuDe\ne+9l5cqVZGVlsWzZsgZLPtnZ2Vx77bXO32fNmkVqaioVFRUAbN682ZnsAUaMGFFj5i/iDqY9qUrE\nXapm2nFxcWzatInVq1cDsGvXLhITE/nJT34CQEBAAEVFRXzwwQfMmjXL+felpaX17v/LL7903s8I\nKu/XEhERwc6dO+nevTt+fn6Eh4c7P+/ZsydffPFFa35FkSZTshefExcXxwMPPEB2djbFxcXExMQ4\nP7t0wXhFRQUBAQFkZ2c3ev82m63Wfqr+AxMYGFirP2AYhqXuziieSWUc8Tnt27dn7NixzJs3r0bi\nnTBhAmvWrOGHH34AoKCggI4dO9KvXz/++c9/ApWJ+eOPP653/3379nXeebHK9OnT2bp1K5s2bSIh\nIaHGZ/n5+YSEhLTCNxNpPiV78UmzZ8/m4MGDNWrnEydOJC4ujmHDhhETE8PTTz8NwCuvvMKqVauI\njo4mIiKCLVu21LvvqKioWk3cTp06MWrUKHr06FErsWdmZjJ69OjW+WIizaQboYk0w913301SUhKx\nsbH1bldYWMi4ceP48MMPXTQykbppZi/SDA899BAvvvhig9utXbuWBQsWuGBEIvXTzF5ExAI0sxcR\nsQAlexERC1CyFxGxACV7ERELULIXEbEAJXsREQv4/4w+NkMIq9efAAAAAElFTkSuQmCC\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.16 page No. 233"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Beta=45 \t\t\t#Unitless\n",
"VBE=0.7 \t\t\t#in Volt\n",
"VCC=0 \t\t\t\t#in Volt\n",
"RB=10**5 \t\t\t#in ohm\n",
"RC=1.2*10**3 \t\t\t#in ohm\n",
"VEE=-9 \t\t\t\t#in Volt\n",
"\n",
"IB=-(VBE+VEE)/RB \t\t#in mA\n",
"IC=Beta*IB \t\t\t#in mA\n",
"VC=VCC-IC*RC \t\t\t#in Volts\n",
"VB=VBE+VEE \t\t\t#in Volts\n",
"\n",
"print\"collector voltage is \",round(VC,1),\"V\"\n",
"print\"Base voltage is \",VB,\"V\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"collector voltage is -4.5 V\n",
"Base voltage is -8.3 V\n"
]
}
],
"prompt_number": 60
}
],
"metadata": {}
}
]
}
|