1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
{
"metadata": {
"name": "",
"signature": "sha256:49f87810817ddb9615b6e59a9caa61ca07b12c7b29a4202a634fda7cd35deb7f"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9: Semiconductor Theory and Devices"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.1, Page 277"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Part (a)\n",
"V_Z = 9.1; # Zener voltage of zener diode, volt\n",
"P_Z = 0.5; # Power rating of zener diode at V_Z, W\n",
"r_Z = 1.5; # Slope resistance of zener diode, ohm\n",
"V = 12; # Nominal value of input voltage, volt\n",
"R_L = 2.5e+03; # Load resistance across zener diode, ohm\n",
"\n",
"\n",
"I_Z = P_Z/V_Z*1e+03; # Zener current, mA\n",
"I_S = I_Z; # Current through series resistor, mA\n",
"V_S = V - V_Z; # Voltage drop across series resistor, volt\n",
"R_S = V_S/I_S*1e+03; # Value of series resistance, ohm\n",
"P_max = (I_S*1e-03)**2*R_S; # Maximum power rating of series resistance, W\n",
"print \"The value of series resistance = %5.2f ohm\"%R_S\n",
"print \"The value of maximum power rating of series resistance = %4.2f W\"%P_max\n",
"print \"(a) The suitable value of R_S should be 54 ohm, 0.25 W\"\n",
"\n",
"# Part (b)\n",
"V_o = V_Z; # Output voltage across zener, volt\n",
"I_L = V_o/R_L*1e+03; # Load current, mA\n",
"I_Z = I_S - I_L; # Zener current, mA\n",
"print \"(b) The value of diode current with load resistance across zener = %5.2f mA\"%I_Z \n",
"\n",
"# Part (c)\n",
"V = 12 - (0.1*12); # Final value of input voltage after falling below 12 V, volt\n",
"R_S = 56; # Standard value of series resistance, ohm\n",
"I_S = (V - V_Z)/R_S*1e+03; # Current through series resistance, mA\n",
"I_Z = I_S - I_L; # Resulting diode current, mA\n",
"delta_I_Z = 51.36 - I_Z; # Change in zener current, mA\n",
"delta_V_Z = delta_I_Z*1e-03*r_Z; # Change in zener voltage, V\n",
"change = delta_V_Z/V_Z*100; # %age change in zener voltage\n",
"print \"(c) The percentage change in the p.d. across the load = %4.2f percent\"%change\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of series resistance = 52.78 ohm\n",
"The value of maximum power rating of series resistance = 0.16 W\n",
"(a) The suitable value of R_S should be 54 ohm, 0.25 W\n",
"(b) The value of diode current with load resistance across zener = 51.31 mA\n",
"(c) The percentage change in the p.d. across the load = 0.41 percent\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.2, Page 279"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"\n",
"#Variable declaration\n",
"Diode = np.array([3, 1]); # Declare a diode cell\n",
"Diode_1 = [1, 15, 30, 0.5, 0.007]; # Data for Ist diode\n",
"Diode_2 = [2, 15, 15, 1.3, 0.20]; # Data for 2nd diode\n",
"Diode_3 = [1, 15, 2.5, 5.0, 0.67]; # Data for 3rd diode\n",
"Resistor = np.array([5, 1]) # Declare a resistor cell\n",
"Resistor_1 = [0.25, 0.026]; # Data for Ist resistor\n",
"Resistor_2 = [0.5, 0.038]; # Data for 2nd resistor\n",
"Resistor_3 = [1.0, 0.055]; # Data for 3rd resistor\n",
"Resistor_4 = [2.5, 0.260]; # Data for 4th resistor\n",
"Resistor_5 = [7.5, 0.280]; # Data for 5th resistor\n",
"V = 24; # Input voltage, volt\n",
"\n",
"#Calculations&Results\n",
"V_Z = Diode_1[1]; # Zener voltage for Ist diode, volt\n",
"V_S = V - V_Z; # Voltage drop across series resistor for all the three diodes, volt\n",
"\n",
"#Part (a)\n",
"# Diode 1\n",
"P_Z = Diode_1[3]; # Power rating of Ist diode, W\n",
"I_Z = P_Z/V_Z*1e+03; # Zener current, mA\n",
"R_S = V_S/I_Z*1e+03; # Value of series resistance, ohm\n",
"P_S = V_S**2/R_S; # Power dissipation across series resistor, watt\n",
"print \"Diode 1:\";\n",
"print \"========\";\n",
"print \"The value of series resistance = %3d ohm\"%R_S;\n",
"print \"The value of power rating of series resistance = %3.1f W\"%P_S\n",
"R_S = 270; # Chosen value of series resistor, ohm\n",
"P_S = 0.3; # Chosen value of power rating, ohm\n",
"print \"The suitable value of R_S should be %3d ohm, %3.1f W\"%(R_S, P_S);\n",
"print \"Total unit cost = %5.3f pounds\\n\"%(Diode_1[4]+Resistor_2[1]);\n",
"\n",
"# Diode 2\n",
"print \"Diode 2:\";\n",
"print \"========\";\n",
"P_Z = Diode_2[3]; # Power rating of 2nd diode, W\n",
"I_Z = P_Z/V_Z*1e+03; # Zener current, mA\n",
"R_S = V_S/I_Z*1e+03; # Value of series resistance, ohm\n",
"P_S = V_S**2/R_S; # Power dissipation across series resistor, watt\n",
"print \"The value of series resistance = %5.2f ohm\"%R_S\n",
"print \"The value of power rating of series resistance = %4.2f W\"%P_S\n",
"R_S = 120; # Chosen value of series resistor, ohm\n",
"P_S = 1.0; # Chosen value of power rating, ohm\n",
"print \"The suitable value of R_S should be %3d ohm, %3.1f W\"%(R_S, P_S);\n",
"print \"Total unit cost = %4.2f pounds\"%(Diode_2[4]+Resistor_3[1]);\n",
"\n",
"# Diode 3\n",
"print \"\\nDiode 3:\";\n",
"print \"========\";\n",
"P_Z = Diode_3[3]; # Power rating of 3rd diode, W\n",
"I_Z = P_Z/V_Z*1e+03; # Zener current, mA\n",
"R_S = V_S/I_Z*1e+03; # Value of series resistance, ohm\n",
"P_S = V_S**2/R_S; # Power dissipation across series resistor, watt\n",
"print \"The value of series resistance = %3d ohm\"%R_S;\n",
"print \"The value of power rating of series resistance = %3.1f W\"%P_S\n",
"R_S = 27; # Chosen value of series resistor, ohm\n",
"P_S = 7.5; # Chosen value of power rating, ohm\n",
"print \"The suitable value of R_S should be %3d ohm, %3.1f W\"%(R_S, P_S);\n",
"print \"Total unit cost = %4.2f pounds\"%(Diode_3[4]+Resistor_5[1]);\n",
"\n",
"# Part (b)\n",
"delta_V_Z = (5*15)/100; # Allowable change in V_Z, volt\n",
"delta_I_Z = 30e-03; # Allowable change in zener current, A\n",
"delta_VZ = np.zeros(3);\n",
"delta_VZ_1 = 30e-03*30; # Change in zener voltage dor diode 1, V\n",
"delta_VZ_2 = 30e-03*15; # Change in zener voltage dor diode 2, V\n",
"delta_VZ_3 = 30e-03*2.5; # Change in zener voltage dor diode 3, V\n",
"print \"\\nThe maximum value of zener voltage change = %4.2f V\"%(max(delta_VZ_2, delta_VZ_3));\n",
"print \"To meet the specification at lowest cost, circuit 2 would be adopted\";\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Diode 1:\n",
"========\n",
"The value of series resistance = 269 ohm\n",
"The value of power rating of series resistance = 0.3 W\n",
"The suitable value of R_S should be 270 ohm, 0.3 W\n",
"Total unit cost = 0.045 pounds\n",
"\n",
"Diode 2:\n",
"========\n",
"The value of series resistance = 103.85 ohm\n",
"The value of power rating of series resistance = 0.78 W\n",
"The suitable value of R_S should be 120 ohm, 1.0 W\n",
"Total unit cost = 0.26 pounds\n",
"\n",
"Diode 3:\n",
"========\n",
"The value of series resistance = 27 ohm\n",
"The value of power rating of series resistance = 3.0 W\n",
"The suitable value of R_S should be 27 ohm, 7.5 W\n",
"Total unit cost = 0.95 pounds\n",
"\n",
"The maximum value of zener voltage change = 0.45 V\n",
"To meet the specification at lowest cost, circuit 2 would be adopted\n"
]
}
],
"prompt_number": 2
}
],
"metadata": {}
}
]
}
|