1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
|
{
"metadata": {
"name": "",
"signature": "sha256:6afa9a01ae55a53807ec01423714e6c6f113931ad8642d6e60f895f0e33b2225"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3: Electric fields and Capacitors"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1, Page 79"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Q = 50e-03; # Electric charge, C\n",
"A = 600e-06; # Area of plate, m^2\n",
"\n",
"#Calculations\n",
"# Solving for electric field density, D\n",
"D = Q/A; # Electric field density, C/m^2\n",
"\n",
"#Result\n",
"print \"The density of the electric field existing between the plates = %4.1f C/m-square\"%D\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The density of the electric field existing between the plates = 83.3 C/m-square\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2, Page 80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"A = 400e-06; # Cross-sectional area of plate, m^2\n",
"I = 50e-06; # Source current, A\n",
"t = 3; # Flow time of current, s\n",
"\n",
"#Calculations\n",
"# Since electric current is the rate of flow of charge i.e I = Q/t, solving for Q \n",
"Q = I*t; # Amount of charge on plates, C\n",
"#Solving for density of the electric field between the plates\n",
"D = Q/A; # Electric field density, C/m^2\n",
"\n",
"#Results\n",
"print \"The charge on the plates = %3d micro-coloumb\"%(Q/1e-06);\n",
"print \"The density of the electric field between the plates = %5.3f C/m-square\"%D\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The charge on the plates = 150 micro-coloumb\n",
"The density of the electric field between the plates = 0.375 C/m-square\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3, Page 83"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"d = 3e-03; # Thickness of dielectric, m\n",
"Q = 35e-03; # Electric charge on plates, C\n",
"V = 150; # Supply voltage, V\n",
"A = 144e-06; # Cross-sectional area of plates, m^2\n",
"\n",
"#Calculations\n",
"# Part (a)\n",
"# Since electric field strength(E) = potential gradient therefore we have\n",
"E = V/d; # Electric field strength, V/m\n",
"# Part (b)\n",
"# Solving for electric field density, D\n",
"D = Q/A; # Electric field density, C/m^2\n",
"\n",
"#Results\n",
"print \"The electric field strength = %2d kV/m\"%(E*1e-03);\n",
"print \"The flux density = %5.1f C/m^2\"%D\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electric field strength = 50 kV/m\n",
"The flux density = 243.1 C/m^2\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4, Page 83"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"d = 4e-03; # Thickness of air, m\n",
"Q = 2e-04; # Electric charge on plates, C\n",
"V = 125; # Supply voltage, V\n",
"D = 15; # Electric field density, coulomb-per-metre-square\n",
"\n",
"#Calculations\n",
"# Part (a)\n",
"# Since electric field strength(E) = potential gradient, therefore we have \n",
"E = V/d; # Electric field strength, V/m\n",
"# Part (b)\n",
"# Since D = Q/A, solving for A\n",
"A = Q/D; # Cross-sectional area of plates, m^2\n",
"# Part (c)\n",
"# Since Q = C*V, solving for C\n",
"C = Q/V; # Capacitance of the plates, F\n",
"\n",
"#Results\n",
"print \"The electric field strength between the plates = %5.2f kV/m\"%(E*1e-03);\n",
"print \"The csa of the field between the plates = %4.1f mm^2\"%(A/1e-06);\n",
"print \"The capacitance of the plates = %3.1f micro-coulomb\"%(C/1e-06);\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The electric field strength between the plates = 31.25 kV/m\n",
"The csa of the field between the plates = 13.3 mm^2\n",
"The capacitance of the plates = 1.6 micro-coulomb\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5, Page 86"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"A = 6e-04; # Cross-sectional area of plates, m^2\n",
"d = 5e-04; # Thickness of mica sheet, m\n",
"Epsilon_r = 5.8; # Relative permittivity, unitless\n",
"Epsilon_0 = 8.854e-12; # Permittivity of Free Space\n",
"V = 200; # Potential difference, V\n",
"\n",
"#Calculations\n",
"# Part (a)\n",
"# Since absolute permittivity, Epsilon = C*(d/A), therefore solving for d & putting Epsilon = Epsilon_0*Epsilon_r \n",
"C = ( Epsilon_r*Epsilon_0*A )/d; # Capacitance, F\n",
"# Part (b)\n",
"# Since electric field strength(E) = potential gradient, therefore we have \n",
"E = V/d; # Electric field strength, V/m\n",
"\n",
"#Results\n",
"print \"The capacitance of the capacitor = %5.2f pF\"%(C/1e-12);\n",
"print \"Electric field strength = %3d kV/m\"%(E*1e-03);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The capacitance of the capacitor = 61.62 pF\n",
"Electric field strength = 400 kV/m\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6, Page 86"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"C = 0.224e-09; #Capacitance, F\n",
"A = 5625e-06; # Cross-sectional area of plates, m^2\n",
"Epsilon_r = 2.5; # Relative permittivity\n",
"Epsilon_0 = 8.854e-12; # Permittivity of Free Space\n",
"\n",
"#Calculations\n",
"# Since absolute permittivity, Epsilon = C*(d/A), therefore solving for d & putting Epsilon = Epsilon_0*Epsilon_r\n",
"d = ( Epsilon_r*Epsilon_0*A )/C; # Thickness of waxed paper dielectric, m\n",
"\n",
"#Result\n",
"print \"The thickness of paper required = %3.2f mm\"%(d/1e-03);\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The thickness of paper required = 0.56 mm\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7, Page 86"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"C = 4.7e-08; #Capacitance, F\n",
"A = 4e-04; # Cross-sectional area of plates, m^2\n",
"d = 1e-04; # Thickness of dielectric, m\n",
"Epsilon_0 = 8.854e-12; # Permittivity of Free Space\n",
"\n",
"#Calculations\n",
"# Since absolute permittivity, Epsilon = C*(d/A), therefore solving for Epsilon_r & putting Epsilon = Epsilon_0*Epsilon_r\n",
"Epsilon_r = (C*d)/(Epsilon_0*A); # Relative permittivity\n",
"\n",
"#Result\n",
"print \"Relative permittivity = %4d\"%Epsilon_r\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Relative permittivity = 1327\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.8, Page 87"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V = 180; # Potential difference, V\n",
"d = 3e-03; # Thickness of dielectric, m\n",
"A = 4.2e-04; # Cross-sectional area of plates, m^2\n",
"Epsilon_r = 3.5; # Relative permittivity\n",
"Epsilon_0 = 8.854e-12; # Permittivity of Free Space\n",
"\n",
"#Calculations\n",
"# Since absolute permittivity, Epsilon = C*(d/A), therefore solving for C & putting Epsilon = Epsilon_0*Epsilon_r \n",
"C = ( Epsilon_r*Epsilon_0*A )/d; # Capacitance, F\n",
"# Since C = Q/V, solving for Q\n",
"Q = C*V; # Electric charge, C\n",
"# Using D = Q/A,\n",
"D = Q/A; # Electric field density, C/m^2\n",
"\n",
"#Results\n",
"print \"The flux thus produced = %3.2f nC.\"%(Q/1e-09)\n",
"print \"The flux density thus produced. = %3.2f micro-coulomb-per-metre-square\"%(D/1e-06); \n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The flux thus produced = 0.78 nC.\n",
"The flux density thus produced. = 1.86 micro-coulomb-per-metre-square\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.9, Page 89"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"C_1 = 4.7e-06; #Capacitance, F\n",
"C_2 = 3.9e-06; #Capacitance, F\n",
"C_3 = 2.2e-06; #Capacitance, F\n",
"\n",
"#Calculations\n",
"# The resulting capacitance of parallerly connected capacitors is the sum of the individual capacitance present \n",
"#in the circuit\n",
"C = C_1 + C_2 + C_3; # Resulting capacitance of the circuit, F\n",
"\n",
"#Result\n",
"print \"The resulting capacitance of the combination = %4.1f micro-farad\"%(C/1e-06);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The resulting capacitance of the combination = 10.8 micro-farad\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.10, Page 90"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"C_1 = 6e-06; #Capacitance, F\n",
"C_2 = 4e-06; #Capacitance, F\n",
"V = 150; # Supply voltage, V\n",
"\n",
"#Calculations\n",
"# Part (a)\n",
"# The reciprocal of the resulting capacitance of capacitors connected in series is the sum of the reciprocal \n",
"#of the individual capacitances present in the circuit i.e 1/C = 1/C1 + 1/C2, solving for C\n",
"C = ( C_1*C_2 )/(C_1 + C_2); # Resulting capacitance, F\n",
"# Part (b)\n",
"Q = V*C; # Electric charge on the capacitors, C\n",
"# Part (c)\n",
"V_1 = Q/C_1; # P.d across capacitor C_1, V\n",
"V_2 = Q/C_2; # P.d across capacitor C_2, V\n",
"\n",
"#Results\n",
"print \"The total capacitance of the combination = %3.1f micro-farad\"%(C/1e-06);\n",
"print \"The charge on each capacitor = %3d micro-coulomb\"%(Q/1e-06);\n",
"print \"The p.d. developed across %1d micro-farad capacitor = %2d V\"%(C_1/1e-06, V_1);\n",
"print \"The p.d. developed across %1d micro-farad capacitor = %2d V\"%(C_2/1e-06, V_2);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total capacitance of the combination = 2.4 micro-farad\n",
"The charge on each capacitor = 360 micro-coulomb\n",
"The p.d. developed across 6 micro-farad capacitor = 60 V\n",
"The p.d. developed across 4 micro-farad capacitor = 90 V\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.11, Page 91"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"C_1 = 3e-06; #Capacitance, F\n",
"C_3 = 12e-06; #Capacitance, F\n",
"C_2 = 6e-06; #Capacitance, F\n",
"V = 400; # Supply voltage, V\n",
"\n",
"#Calculations\n",
"# The reciprocal of the resulting capacitance of capacitors connected in series is the sum of the reciprocal of the \n",
"#individual capacitances present in the circuit i.e 1/C = 1/C1 + 1/C2 + 1/C_3, solving for C\n",
"C = (C_1 * C_2 * C_3)/( C_1*C_2 + C_2*C_3 + C_3*C_1); # Resulting capacitance, F\n",
"Q = V*C; # Electric charge on the capacitors, C\n",
"# Part (c)\n",
"V_1 = Q/C_1; # P.d across capacitor C_1, V\n",
"V_2 = Q/C_2; # P.d across capacitor C_2, V\n",
"V_3 =Q/C_3; # P.d across capacitor C_2, V\n",
"\n",
"#Results\n",
"print \"P.d across capacitor %1d micro-farad = %5.1f V\"%(C_1/1e-06, V_1);\n",
"print \"P.d across capacitor %1d micro-farad = %5.1f V\"%(C_2/1e-06, V_2);\n",
"print \"P.d across capacitor %2d micro-farad = %4.1f V\"%(C_3/1e-06, V_3);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"P.d across capacitor 3 micro-farad = 228.6 V\n",
"P.d across capacitor 6 micro-farad = 114.3 V\n",
"P.d across capacitor 12 micro-farad = 57.1 V\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.12, Page 92"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V = 200; # Supply voltage, voltage\n",
"C_AB = 2.; # Capacitance across branch AB, micro-farad\n",
"C_BC = 3.; # Capacitance across branch BC, micro-farad\n",
"C_CD = 6.; # Capacitance across branch CD, micro-farad\n",
"C_EF = 8.; # Capacitance across branch EF, micro-farad\n",
"C_BD = 4.; # Capacitance across branch EF, micro-farad\n",
"\n",
"#Calculations\n",
"# Part (a)\n",
"# Since 3-micro-farad & 6-micro-farad capacitors are in series & the reciprocal of the resulting capacitance of \n",
"#capacitors connected in series is the sum of the reciprocal of the individual capacitances present in the circuit, \n",
"#therefore i.e 1/C = 1/C1 + 1/C2 \n",
"C_BCD = ( C_BC*C_CD )/(C_BC+C_CD); # Resulting capacitance across branch BCD, micro-farad\n",
"#Since C_BCD & 4-micro-farad capacitors are in parallel & the resulting capacitance of parallerly connected capacitors \n",
"#is the sum of the individual capacitance present in the circuit\n",
"C_BD = C_BCD + C_BD; # Resulting capacitance across branch BD, micro-farad\n",
"# Since 2-micro-farad & C_BD capacitors are in series & the reciprocal of the resulting capacitance of capacitors \n",
"#connected in series is the sum of the reciprocal of the individual capacitances present in the circuit, therefore, \n",
"#we have\n",
"C_AD = (C_BD*C_AB)/(C_BD+C_AB); # Resulting capacitance across branch AD, micro-farad\n",
"#Since C_AD & C_EF capacitors are in parallel & the resulting capacitance of parallerly connected capacitors is the \n",
"#sum of the individual capacitance present in the circuit\n",
"C = C_AD + C_EF; # Resulting capacitance of the circuit, micro-farad\n",
"Q = V*C; # Electric charge drawn from the supply, C\n",
"\n",
"# Part (b)\n",
"Q_EF = V*C_EF; # The charge on the 8 micro-farad capacitor, micro-coulomb\n",
"\n",
"# Part (c)\n",
"Q_AD = Q - Q_EF; # The charge on the 4 micro-farad capacitor, C\n",
"Q_BD = Q_AD; # Charge in series combination of capacitors, micro-farad\n",
"# Since Q = C*V, solving for V\n",
"V_BD = Q_BD/C_BD; # The p.d. across the 4F capacitor,V\n",
"\n",
"# Part(d)\n",
"Q_BCD = V_BD*C_BCD; # Electric charge across branch BCD, C\n",
"Q_BC = Q_BCD; # Electric charge, C\n",
"V_BC = Q_BC/C_BC; # The p.d. across the 3 micro-farad capacitor\n",
"\n",
"#Results\n",
"print \"The charge drawn from the supply = %3.1f mC\"%(Q/1e+03);\n",
"print \"The charge on the %1d micro-farad capacitor = %3.1f mC\"%(C_EF, Q_EF/1e+03);\n",
"print \"The p.d. across the %1d micro-farad capacitor= %2d V\"%(C_BD, V_BD);\n",
"print \"The p.d. across the %1d micro-farad capacitor = %5.2f V\"%(Q_BC, V_BC);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The charge drawn from the supply = 1.9 mC\n",
"The charge on the 8 micro-farad capacitor = 1.6 mC\n",
"The p.d. across the 6 micro-farad capacitor= 50 V\n",
"The p.d. across the 100 micro-farad capacitor = 33.33 V\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.13, Page 96"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"N = 20; # Number of plates in a capacitor\n",
"A = 6400e-06; # Cross - sectional area of plate, m^2\n",
"d = 1.5e-03; # Distance between plates, m\n",
"epsilon_r = 6.4; # Relative permittivity for mica\n",
"epsilon_o = 8.854e-12; # Relative permittivity for free space\n",
"\n",
"#Calculations\n",
"# Calculating the capacitance of the capacitor\n",
"C = ((epsilon_o)*(epsilon_r)*A*(N-1))/d; # Capacitance, F\n",
"\n",
"#Result\n",
"print \" The capacitance of the capacitor = %3.1f nF\"%(C/1e-09);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The capacitance of the capacitor = 4.6 nF\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.14, Page 96"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"N = 9; # Number of plates in a capacitor\n",
"A = 1200e-06; # Cross - sectional area of plate, m^2\n",
"C = 3e-10; # Capacitance, F\n",
"epsilon_r = 5; # Relative permittivity for mica\n",
"epsilon_o = 8.854e-12; # Relative permittivity for free space\n",
"\n",
"#Calculations\n",
"# Using the formula of capacitance, C = ((epsilon_o)*(epsilon_r)*A*(N-1))/d and solving for d, we have\n",
"d = ((epsilon_o)*(epsilon_r)*A*(N-1))/C; # Distance between plates, m\n",
"\n",
"#Result\n",
"print \"The thickness of mica between parallel plates of a capacitor = %4.2f mm\"%(d/1e-03);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The thickness of mica between parallel plates of a capacitor = 1.42 mm\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.15, Page 97"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"N = 11; # Number of plates in a capacitor\n",
"r = 25e-03; # Radius of circular plate, m\n",
"A = (math.pi*r**2); # Cross - sectional area of plate, m^2\n",
"d = 5e-04; # Distance between plates, m\n",
"epsilon_r = 1; # Relative permittivity for air\n",
"epsilon_o = 8.854e-12; # Relative permittivity for free space\n",
"\n",
"#Calculations\n",
"# Calculating the capacitance of the capacitor\n",
"C = ((epsilon_o)*(epsilon_r)*A*(N-1))/d; # Capacitance, F\n",
"\n",
"#Result\n",
"print \" The capacitance of the capacitor = %3.2f pF\"%(C/1e-10);\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" The capacitance of the capacitor = 3.48 pF\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.16, Page 99"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"C_1 = 3e-06; # Capacitance, F\n",
"C_2 = 6e-06; # Capacitance, F\n",
"V_1 = 250; # Voltage across capacitor C_1, V\n",
"\n",
"#Calculations\n",
"# Since each capacitor will take charge according to its capacitance, so we have\n",
"Q = C_1*V_1; # Charge on first capacitor C_1, C\n",
"W_1 = 0.5*C_1*(V_1**2); # Energy stored, J\n",
"# When the two capacitors are connected in parallel the 3 micro-farad will share its charge with 6 micro-farad capacitor. Thus the total charge in the system will remain unchanged, but the total capacitance will now be different\n",
"C = C_1 + C_2; # Total capacitance, F\n",
"# Since Q = C*V, solving for V\n",
"V = Q/C; # Voltage across capacitor C_2, V\n",
"W = 0.5*C*(V**2); # Total energy stored by the combination, J\n",
"\n",
"#Results\n",
"print \"The charge and energy stored by %1d micro-F capacitor are %3.2f mC and %5.2f mJ respectively \"%(C_1/1e-06, Q/1e-03 , W_1/1e-03);\n",
"print \"The p.d. between the plates = %5.2f V\"%V\n",
"print \"The energy stored by the combination of %1d micro-F and %1d micro-F capacitors = %5.2f mJ\"%(C_1/1e-06, C_2/1e-06, W/1e-03);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The charge and energy stored by 3 micro-F capacitor are 0.75 mC and 93.75 mJ respectively \n",
"The p.d. between the plates = 83.33 V\n",
"The energy stored by the combination of 3 micro-F and 6 micro-F capacitors = 31.25 mJ\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.17, Page 100"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V = 200; # Supply voltage, V\n",
"C_1 = 10e-06; # Capacitance, farad\n",
"C_2 = 6.8e-06; # Capacitance, farad\n",
"C_3 = 4.7e-06; # Capacitance, farad\n",
"\n",
"#Calculations\n",
"# Part (a)\n",
"# Since each capacitor will take charge according to its capacitance, so we have\n",
"Q_1 = V*C_1; # Charge stored on capacitor C_1, C\n",
"W_1 = 0.5*C_1*(V**2); # Energy stored on capacitor C_1, J\n",
"# Part (b)\n",
"# Since C_2 and C_3 are in series and hence, their equivalent capacitance is given by their series combination\n",
"C_4 = (C_2 * C_3)/(C_2 + C_3); # Equivalent capacitance of C_2 and C_3, F\n",
"# Since C_1 and C_4 are in parallel and hence, their equivalent capacitance is given by their parallel combination\n",
"C = C_1 + C_4; # Total capacitance of circuit, F\n",
"# Since Q = C*V, solving for V\n",
"V_1 = Q_1/C; # New p.d across C_1, V\n",
"W = 0.5*C*(V_1**2); # Total energy remaining in the circuit, J\n",
"energy_used = W_1 - W; # Energy, J\n",
"\n",
"#Results\n",
"print \"The charge and energy stored by %2d micro-F capacitor are %1d mC and %2.1f J respectively \"%(C_1/1e-06, Q_1/1e-03, W_1);\n",
"print \"The new p.d across %2d micro-F capacitor = %5.1f V\"%(C_1/1e-06,V_1);\n",
"print \"The amount of energy used in charging %3.1f micro-F and %3.2f micro-F capacitors from %2d micro-F capacitor = %4.3f J\"%(C_2/1e-06, C_3/1e-06, C_1/1e-06, energy_used/1e-03);\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The charge and energy stored by 10 micro-F capacitor are 2 mC and 0.2 J respectively \n",
"The new p.d across 10 micro-F capacitor = 156.5 V\n",
"The amount of energy used in charging 6.8 micro-F and 4.70 micro-F capacitors from 10 micro-F capacitor = 43.495 J\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.18, Page 101"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"V = 400; # Supply voltage, V\n",
"E = 0.5e06; # Dielectric strength, V/m\n",
"\n",
"#Calculations\n",
"# Since E = V/d, solving for d\n",
"d = V/E; # Thickness of dielectric, m\n",
"\n",
"#Result\n",
"print \"The minimum thickness of dielectric required = %3.1fmm\"%(d/1e-03);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The minimum thickness of dielectric required = 0.8mm\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.19, Page 101"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"C = 270e-12; # Capacitance, F\n",
"A = 60e-04; # Cross-sectional area of plate, m^2\n",
"E = 350e03; # Dielectric strength, V/m\n",
"epsilon_r = 2.1; # Relative permittivity\n",
"epsilon_o = 8.854e-12; # Permittivity of free space\n",
"\n",
"#Calculations\n",
"# Part (a)\n",
"# Since formula for capacitance, C = ((epsilon_o)*(eplison_r)*A)/d, solving for d\n",
"d = ((epsilon_o)*(epsilon_r)*A)/C; # Thickness of dielectric, m\n",
"# Part (b)\n",
"# Since E = V/d, solving for V\n",
"V = E*d; # Maximum possible working voltage, V\n",
"\n",
"#Results\n",
"print \"The thickness of Teflon sheet required = %5.4f mm\"%(d/1e-03);\n",
"print \"The maximum possible working voltage for the capacitor = %5.1f V\"%V;\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The thickness of Teflon sheet required = 0.4132 mm\n",
"The maximum possible working voltage for the capacitor = 144.6 V\n"
]
}
],
"prompt_number": 19
}
],
"metadata": {}
}
]
}
|