1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
{
"metadata": {
"name": "",
"signature": "sha256:52ff353152f32e41c2e832a90f993fbd3f11b7f2a5fbb5e4f20eb7599a61f880"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9 : Solid Movement Mixing Segregation and Staging"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1, Page 218\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"umf=0.015; #Velocity at minimum fluidization condition in m/s\n",
"ephsilonmf=0.5; #Void fraction at minimum fluidization condition\n",
"uo=0.1; #Superficial gas velocity in m/s\n",
"delta=0.2; #Bed fraction in bubbles\n",
"db=0.06; #Equilibrium bubble size in m\n",
"dt=[0.1,0.3,0.6,1.5]; #Various vessel sizes in m\n",
"ub=[0.4,0.75,0.85,1.1]; #Bubble velocity in m/s\n",
"Dsv=[0.03,0.11,0.14,0.23]; #Reported values of vertical dispersion coefficient\n",
"\n",
"#CALCULATION\n",
"n=len(ub);\n",
"i=0;\n",
"fw1=2;#Wake fraction from Hamilton et al.\n",
"fw2=0.32;#Wake fraction from Fig.(5.8)\n",
"fw=(fw1+fw2)*0.5;#Average value of wake fraction\n",
"Dsv1 = []\n",
"Dsv2 = []\n",
"while i<n:\n",
" Dsv1.append(12*((uo*100)**0.5)*((dt[i]*100)**0.9));#Vertical distribution coefficient from Eqn.(3)\n",
" Dsv2.append((fw**2*ephsilonmf*delta*db*ub[i]**2)/(3*umf));#Vertical distribution coefficient from Eqn.(12)\n",
" i=i+1;\n",
"\n",
"print Dsv1\n",
"\n",
"#OUTPUT\n",
"print '\\t\\tVertical dispersion coefficient(m**2/s)'\n",
"print 'Vessel Size(m)',\n",
"print '\\tFrom Experiment',\n",
"print '\\tFrom Eqn.(3)',\n",
"print '\\tFrom Eqn.(12)'\n",
"i=0;\n",
"while i<n:\n",
" print '%.2f'%dt[i],\n",
" print '\\t%.3f'%Dsv[i],\n",
" print '\\t%.2f'%(Dsv1[i]/10**4),\n",
" print '\\t%.2f'%Dsv2[i]\n",
" i=i+1; \n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[301.42637178114967, 810.1965234492834, 1511.8801720132121, 3448.7632274996104]\n",
"\t\tVertical dispersion coefficient(m**2/s)\n",
"Vessel Size(m) \tFrom Experiment \tFrom Eqn.(3) \tFrom Eqn.(12)\n",
"0.10 \t0.030 \t0.03 \t0.03\n",
"0.30 \t0.110 \t0.08 \t0.10\n",
"0.60 \t0.140 \t0.15 \t0.13\n",
"1.50 \t0.230 \t0.34 \t0.22\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2, Page 222\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Lmf=0.83; #Length of bed at minimum fluidization condition in m\n",
"dp=450.0; #Average particle size in micrometer\n",
"ephsilonmf=0.42; #Void fraction at minimum fluidization condition\n",
"umf=0.17; #Velocity at minimum fluidization condition in m/s\n",
"uo=[0.37,0.47,0.57,0.67]; #Superficial gas velocity in m/s\n",
"Dsh=[0.0012,0.0018,0.0021,0.0025]; #Horizontal Drift Coefficient from Experiment in m**2/s\n",
"db=[0.10,0.14]; #Equilibrium bubble size in m\n",
"g=9.81; #Acceleration due to gravity in m/s**2\n",
"\n",
"\n",
"#CALCULATION\n",
"n=len(uo);\n",
"m=len(db);\n",
"k=0;\n",
"alpha=0.77;#Since we are not dealing with Geldart A or AB solids\n",
"uf=umf/ephsilonmf;\n",
"ubr = []\n",
"ub = []\n",
"delta = []\n",
"Dshc = []\n",
"for j in range(m):\n",
" for i in range(n):\n",
" ubr.append(0.711*(db[j]*g)**0.5);#Rise velocity of a single bubble in m/s\n",
" ub.append(uo[i]-umf+ubr[k]);#Rise velocity of bubbles in a bubbling bed\n",
" delta.append((uo[i]-umf)/(ub[k]+umf));#Bed fraction in bubbles\n",
" if ubr[i]>uf:\n",
" Dshc.append((3/16.0)*(delta[k]/(1-delta[k]))*((alpha**2*db[j]*ubr[k]*((((ubr[k]+2*uf)/(ubr[k]-uf))**(1.0/3))-1))));\n",
" #Horizontal Distribution coeff. from Eqn.(14)\n",
" else:\n",
" Dsh.append((3.0/16)*(delta/(1-delta))*(alpha**2*umf*db/ephsilonmf))\n",
" #Horizontal Distribution coeff. from Eqn.(15)\n",
" Dshc.append((3/16.0)*(delta[k]/(1-delta[k]))*((alpha**2*db[j]*ubr[k]*((((ubr[k]+2*uf)/(ubr[k]-uf))**(1/3.0))-1))));#Horizontal Distribution coeff. from Eqn.(14)\n",
" k=k+1;\n",
"i=0;\n",
"j=0;\n",
"k=0;\n",
"while k<m*n:\n",
" print 'Snce we do not have ub=%fm/s>>uf=%fm/s we use Eqn.(14).'%(ub[k],uf)\n",
" print 'Gas Velocity(m/s)'\n",
" print '\\tHorizontal Drift Coefficient Calculated(m**2/s)'\n",
" print '\\tHorizontal Drift Coefficient from Experiment(m**2/s)'\n",
" while j<m:\n",
" print 'db=%fm'%db[j]\n",
" while i<n:\n",
" print '%f'%uo[i],\n",
" print '\\t\\t%f'%Dshc[k],\n",
" print '\\t\\t\\t\\t\\t%f'%Dsh[i]\n",
" i=i+1; \n",
" k=k+1;\n",
" i=0;\n",
" j=j+1;\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Snce we do not have ub=0.904213m/s>>uf=0.404762m/s we use Eqn.(14).\n",
"Gas Velocity(m/s)\n",
"\tHorizontal Drift Coefficient Calculated(m**2/s)\n",
"\tHorizontal Drift Coefficient from Experiment(m**2/s)\n",
"db=0.100000m\n",
"0.370000 \t\t0.001283 \t\t\t\t\t0.001200\n",
"0.470000 \t\t0.001283 \t\t\t\t\t0.001800\n",
"0.570000 \t\t0.001924 \t\t\t\t\t0.002100\n",
"0.670000 \t\t0.001924 \t\t\t\t\t0.002500\n",
"db=0.140000m\n",
"0.370000 \t\t0.002566 \t\t\t\t\t0.001200\n",
"0.470000 \t\t0.002566 \t\t\t\t\t0.001800\n",
"0.570000 \t\t0.003207 \t\t\t\t\t0.002100\n",
"0.670000 \t\t0.003207 \t\t\t\t\t0.002500\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3, Page 232\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"Gsup=1.5; #Solid interchange rate in kg/m**2plate s\n",
"dor=19.1; #Orifice diameter in mm\n",
"dp=210; #Particle size in micrometer\n",
"uo=0.4; #Superficial gas velocity in m/s\n",
"fopen=[0.12,0.17,0.26]; #Open area fraction \n",
"pi=3.14;\n",
"\n",
"#CALCULATION\n",
"n=len(fopen);\n",
"uor = []\n",
"ls1 = []\n",
"i=0\n",
"while i<n:\n",
" uor.append(uo/fopen[i]); #Gas velocity through the orifice\n",
" ls1.append(Gsup/fopen[i]);#Flux of solids through the holes\n",
" i=i+1;\n",
"\n",
"ls2=[12,20,25]; #Flux of solids through holes from Fig.13(c) for different uor values\n",
"fopen1=0.12; #Open area fraction which gives reasonable fit\n",
"lor=math.sqrt(((math.pi/4)*dor**2)/fopen1);#Orifice spacing\n",
"\n",
"#OUTPUT\n",
"print 'fopen',\n",
"print '\\t\\tuor(m/s)',\n",
"print '\\tls from Eqn.(18)',\n",
"print '\\tls from Fig.13(c)'\n",
"i=0;\n",
"while i<n:\n",
" print '%f'%fopen[i],\n",
" print '\\t%f'%uor[i],\n",
" print '\\t%f'%ls1[i],\n",
" print '\\t\\t%f'%ls2[i]\n",
" i=i+1; \n",
"\n",
"print '\\nFor square pitch, the orifice spacing should be %fmm'%lor\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"fopen \t\tuor(m/s) \tls from Eqn.(18) \tls from Fig.13(c)\n",
"0.120000 \t3.333333 \t12.500000 \t\t12.000000\n",
"0.170000 \t2.352941 \t8.823529 \t\t20.000000\n",
"0.260000 \t1.538462 \t5.769231 \t\t25.000000\n",
"\n",
"For square pitch, the orifice spacing should be 48.863850mm\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|