1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
|
{
"metadata": {
"name": "",
"signature": "sha256:8eb00dc3983a05f0d88bd9a81e8b022860563cdbf1df8dacf4157210feb1c3ce"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 7 : Entrainment and Elutriation from Fluidized Beds"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1, Page 179"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"rhog=5.51; #Density of gas in kg/m**3\n",
"rhos=1200; #Density of solid in kg/m**3\n",
"dpbar=130; #Average size of particles in micrometer\n",
"uo=0.61; #Superficial gas velocity in m/s\n",
"g=9.80; #Acceleration due to gravity in m/s**2\n",
"\n",
"#CALCULATION\n",
"#Assuming that freeboard in higher than TDH, computation of entrainment rate by Zenz & Weil's method\n",
"x=(uo**2)/(g*(dpbar*10**-6)*rhos**2);#Calculation of value of x-axis for Fig.(6), page 175\n",
"y=1.2; # Value of y-axis from Fig.(6)\n",
"Gsstar=y*rhog*uo; #Computation of rate of entrainment\n",
"\n",
"#OUTPUT\n",
"print '\\nRate of entrainment=%.2fkg/m**2s'%Gsstar\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Rate of entrainment=4.03kg/m**2s\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2, Page 180\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"x=0.2; #Fraction of fines in the bed\n",
"Gsstar=4.033320 #Rate of entrainment in kg/m**2s(from Exa.1)\n",
"\n",
"#CALCULATION\n",
"Gsstar1=x*Gsstar;#Rate of entrainment by Eqn.(3)\n",
"\n",
"#OUTPUT\n",
"print '\\nRate of entrainment=%.3fkg/m**2s'%Gsstar1\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Rate of entrainment=0.807kg/m**2s\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3, Page 181\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"rhog=5.51; #Density of gas in kg/m**3\n",
"rhos=1200; #Density of solid in kg/m**3\n",
"uo=0.61; #Superficial gas velocity in m/s\n",
"g=9.80; #Acceleration due to gravity in m/s**2\n",
"dp=[10,30,50,70,90,110,130]; #Diameter of particle in micrometer\n",
"p=[0.,0.0110,0.0179,0.0130,0.0058,0.0020,0.];\n",
"pi=3.142857;\n",
"dt=6;\n",
"\n",
"#CALCULATION\n",
"n=len(dp);\n",
"i=0;\n",
"x = [0,0,0,0,0,0,0]\n",
"while i<n:\n",
" x[i]=(uo**2)/(g*(dp[i]*10**-6)*rhos**2);#Computation of value of x-axis for Fig.(6), page 175)\n",
" i=i+1;\n",
"\n",
"y=[40,12,6,3.2,2.,1.3,1];#Value of y-axis corresponding to each value of x-axis\n",
"y1 = []\n",
"for i in range(n):\n",
" y1.append(y[i]*p[i]);\n",
"i=0;\n",
"k=0;\n",
"\n",
"while i<n-2:\n",
" y1[i]=(y[i]*p[i]);\n",
" k=k+((0.5)*(dp[i+1]-dp[i])*(y1[i+1]+y1[i]));#Integration using Trapezoidal rule\n",
" i=i+1;\n",
"rhosbar=k*rhog;#Computation of solid loading\n",
"te=(pi/4)*(dt**2)*rhosbar*uo;#Computation of total entrainment\n",
"\n",
"#OUTPUT\n",
"print '\\nSolid loading =%.1fkg/m**3'%rhosbar\n",
"print '\\nTotal Entrainment =%.0fkg/s'%te\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Solid loading =32.4kg/m**3\n",
"\n",
"Total Entrainment =559kg/s\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4, Page 181\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"dp=[40,60,80,100,120]; #Diameter of particle in micrometer\n",
"uo=0.381; #Superficial gas velocity in m/s\n",
"\n",
"#CALCULATION\n",
"Gs=0.9;#Rate of entrainment in kg/m**2 s from Fig.3(a)\n",
"pb = [0.45,1.00,1.25,1.00,0.60];#Size distribution for bed particles from Fig.3(b)\n",
"pe=[1.20,2.00,1.25,0.45,0.10]; #Size distribution for entrained particles from Fig.3(b)\n",
"n=len(dp);\n",
"for i in range(n):\n",
" pb[i] = pb[i]/100.\n",
" pe[i] = pe[i]/100.\n",
"i=0;\n",
"ki = []\n",
"while i<n:\n",
" ki.append((Gs*pe[i])/pb[i]);#Calculation of ki* using Eqn.(13)\n",
" i=i+1;\n",
"\n",
"#OUTPUT\n",
"print '\\ndpi(micrometer)',\n",
"print '\\t100pb(dpi)(micrometer**-1)',\n",
"print '\\t100pe(dpi)(micrometer**-1)',\n",
"print '\\tki*(kg/m**2 s)'\n",
"\n",
"j=0;\n",
"while j<n:\n",
" print '%f'%dp[j],\n",
" print '\\t%f'%(100*pb[j]),\n",
" print '\\t\\t\\t%f'%(100*pe[j]),\n",
" print '\\t\\t\\t%f'%ki[j]\n",
" j=j+1;\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"dpi(micrometer) \t100pb(dpi)(micrometer**-1) \t100pe(dpi)(micrometer**-1) \tki*(kg/m**2 s)\n",
"40.000000 \t0.450000 \t\t\t1.200000 \t\t\t2.400000\n",
"60.000000 \t1.000000 \t\t\t2.000000 \t\t\t1.800000\n",
"80.000000 \t1.250000 \t\t\t1.250000 \t\t\t0.900000\n",
"100.000000 \t1.000000 \t\t\t0.450000 \t\t\t0.405000\n",
"120.000000 \t0.600000 \t\t\t0.100000 \t\t\t0.150000\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5, Page 181\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"rhog=1.217; #Density of gas in kg/m**3\n",
"myu=1.8E-5; #Viscosity of gas in kg/m s\n",
"umf=0.11; #Velocity at minimum fluidization condition in m/s\n",
"rhos=2000.0; #Density of solid in kg/m**3\n",
"uo=1.0; #Superficial gas velocity in m/s\n",
"g=9.80; #Acceleration due to gravity in m/s**2\n",
"dp=[30,40,50,60,80,100,120]; #Diameter of particle in micrometer\n",
"uti=[0.066,0.115,0.175,0.240,0.385,0.555,1.0];#Terminal velocity of particles in m/s\n",
"\n",
"#CALCULATION\n",
"n=len(dp);\n",
"i=0;\n",
"Ret = []\n",
"kistar1 = []\n",
"kistar2 = []\n",
"kistar3 = []\n",
"kistar4 = []\n",
"kistar5 = []\n",
"kistar6 = []\n",
"x1 = []\n",
"x2 = []\n",
"\n",
"while i<n:\n",
" #Using Yagi & Aochi's correlation\n",
" Ret.append((rhog*(uti[i])*dp[i]*10**-6)/myu)\n",
" a =((myu*((uo-uti[i])**2))/(g*(dp[i]*10**-6)**2))*(0.0015*(Ret[i]**0.5)+(0.01*(Ret[i]**1.2)));\n",
" kistar1.append(a)\n",
" #Using Wen & Hasinger's correlation\n",
" a=(((1.52E-5)*((uo-uti[i])**2)*rhog)/(g*dp[i]*10**-6)**0.5)*(Ret[i]**0.725)*((rhos-rhog)/rhog)**1.15;\n",
" kistar2.append(a)\n",
" #Using Merrick & Highley's correlation\n",
" a=uo*rhog*(0.0001+130*math.exp(-10.4*((uti[i]/uo)**0.5)*((umf/(uo-umf))**0.25)));\n",
" kistar3.append(a)\n",
" #Using Geldart's correlation\n",
" a=23.7*uo*rhog*math.exp(-5.4*(uti[i]/uo));\n",
" kistar4.append(a)\n",
" #Using Zenz & Weil's procedure\n",
" a=(uo**2)/(g*(dp[i]*10.0**-6)*rhos**2);#Computation of value of x-axis for Fig.(6), page 175)\n",
" x1.append(a)\n",
" y1=[12.2,8.6,6.4,4.9,2.75,1.8,1.2];#Value of y-axis corresponding to each value of x-axis\n",
" kistar5.append(y1[i]*rhog*uo)\n",
" #Using Gugnoni & Zenz's procedure\n",
" a=(uo-uti[i])/((g*dp[i]*10**-6)**0.5);#Computation of value of x-axis for Fig.(6), page 175)\n",
" x2.append(a)\n",
" y=[5.8,5.4,3.2,2.8,1.3,0.6,0];#Value of y-axis corresponding to each value of x-axis\n",
" kistar6.append(y[i]*rhog*uo)\n",
" i=i+1;\n",
"\n",
"i=0;\n",
"print 'dp(micrometer)',\n",
"print '\\tYagi & Aochi',\n",
"print '\\tWen & Hashinger',\n",
"print '\\t\\tMerrick & Highley',\n",
"print '\\tGeldart et al.',\n",
"print '\\t\\tZenz & Well',\n",
"print '\\t\\tGugnoni & Zenz'\n",
"while i<n:\n",
" print '\\n%f'%dp[i],\n",
" print '\\t%f'%kistar1[i],\n",
" print '\\t%f'%kistar2[i],\n",
" print '\\t\\t%f'%kistar3[i],\n",
" print '\\t\\t%f'%kistar4[i],\n",
" print '\\t\\t%f'%kistar5[i],\n",
" print '\\t\\t%f'%kistar6[i],\n",
" i=i+1;\n",
"\n",
"#Note: There is huge deviation of the calculated answer and the answer given in the textbook for the correlation of Merrick & Highley. There is a contradiction in the correlation used in the problem and the one given in page 179. \n",
"#We tried to retrieve the original paper i.e. D.Merrick and J.Highley, AICHE J., 6, 220(1960). But the effort was not fruitful.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"dp(micrometer) \tYagi & Aochi \tWen & Hashinger \t\tMerrick & Highley \tGeldart et al. \t\tZenz & Well \t\tGugnoni & Zenz\n",
"\n",
"30.000000 \t2.571188 \t1.092184 \t\t32.451340 \t\t20.195582 \t\t14.847400 \t\t7.058600 \n",
"40.000000 \t2.965958 \t1.564720 \t\t19.546385 \t\t15.500369 \t\t10.466200 \t\t6.571800 \n",
"50.000000 \t3.240381 \t1.938471 \t\t11.993076 \t\t11.210646 \t\t7.788800 \t\t3.894400 \n",
"60.000000 \t3.289995 \t2.154988 \t\t7.713841 \t\t7.892113 \t\t5.963300 \t\t3.407600 \n",
"80.000000 \t2.852535 \t2.120728 \t\t3.447977 \t\t3.606955 \t\t3.346750 \t\t1.582100 \n",
"100.000000 \t1.883718 \t1.521994 \t\t1.600171 \t\t1.440318 \t\t2.190600 \t\t0.730200 \n",
"120.000000 \t0.000000 \t0.000000 \t\t0.332158 \t\t0.130271 \t\t1.460400 \t\t0.000000\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6, Page 190\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"dpbar=60.0; #Average size of particles in micrometer\n",
"rhog=1.3; #Density of gas in kg/m**3\n",
"rhos=1500.0; #Density of solid in kg/m**3\n",
"umf=0.003; #Velocity at minimum fluidization condition in m/s\n",
"uo=0.503; #Superficial gas velocity in m/s\n",
"g=9.80; #Acceleration due to gravity in m/s**2\n",
"Hf=2.0; #Height at which the cyclone inlet is to be located in m\n",
"\n",
"#CALCULATION\n",
"y=(uo**2)/(g*(dpbar*10**-3)*rhos**2);#Calculation of value of y-axis for Fig.(6), page 175\n",
"x=1;#Value of x-axis from Fig.(6), page 175\n",
"Gsstar=x*rhog*uo;#Computation of rate of entrainment\n",
"Gsuo=5.0;#Ejection rate pf particles in kg/m**2 s from Fig.(11), page 188\n",
"a=0.72/uo;#From Fig.(12), page 189\n",
"Gs=Gsstar+(Gsuo-Gsstar)*math.exp(-a*Hf);\n",
"p=((Gs-Gsstar)/Gsstar)*100.0;\n",
"\n",
"#OUTPUT\n",
"print '\\nRate of entrainment from short bed=%.3fkg/m**2s'%Gs\n",
"print '\\nThis entrainment is %f percent higher than it would be if the gas exit were at the TDH'%p\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Rate of entrainment from short bed=0.902kg/m**2s\n",
"\n",
"This entrainment is 37.955972 percent higher than it would be if the gas exit were at the TDH\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|