summaryrefslogtreecommitdiff
path: root/Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch6.ipynb
blob: 9c4f23114f8733df2a22c952be36ffa76b304c89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
{
 "metadata": {
  "name": "",
  "signature": "sha256:432c74872bfc5b3cdf6cd2ab6c97c0ab1581b40f382e3a1bf8502ef1c3f981bb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6 : Bubbling Fluidized Beds"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 1, Page 150"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "z=0.5;     #Height of bed in m\n",
      "dt=0.5;    #ID of tube in m\n",
      "rhos=1.6;  #Density of catalyst in g/cm**3\n",
      "dpbar=60.;  #Averge catalyst diameter in micrometer\n",
      "umf=0.002; #Velocity at minimum fluidization condition in m/s\n",
      "uo=0.2;    #Superficial velocity in m/s\n",
      "dor=2.;     #Diameter of orifice in mm\n",
      "lor=20.;    #Pitch of perforated plate in mm\n",
      "g=9.80;    #g=980;#Acceleration due to gravity in m/s**2\n",
      "\n",
      "#CALCULATION\n",
      "#Method 1. Procedure using Eqn.(10) & Eqn.(11)\n",
      "db=(0.035+0.040)/2.;#Bubble size at z=0.5m from Fig.7(a) & Fig.7(b)\n",
      "ub1=1+1.55*((uo-umf)+14.1*(db+0.005))*(dt**0.32)*0.711*(g*db)**0.5;#Bubble velocity using Eqn.(10) & Eqn.(11)\n",
      "\n",
      "#Method 2. Werther's procedure\n",
      "si=0.8;#From Fig.6 for Geldart A solids \n",
      "ub2=si*(uo-umf)+(3.2*(dt**(1./3)))*(0.711*(g*db)**0.5);#Bubble velocity using Eqn.(9)\n",
      "\n",
      "#OUTPUT\n",
      "print 'Method 1. Procedure using Eqn.(10) & Eqn.(11)'\n",
      "print '\\tDiameter of the bubble=%.4fm'%db\n",
      "print '\\tRise velocity of the bubble=%.4fm/s'%ub1\n",
      "print 'Method 2. Werthers procedure'\n",
      "print '\\tDiameter of the bubble=%fm'%db\n",
      "print '\\tRise velocity of the bubble=%fm/s'%ub2\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Method 1. Procedure using Eqn.(10) & Eqn.(11)\n",
        "\tDiameter of the bubble=0.0375m\n",
        "\tRise velocity of the bubble=1.4267m/s\n",
        "Method 2. Werthers procedure\n",
        "\tDiameter of the bubble=0.037500m\n",
        "\tRise velocity of the bubble=1.253125m/s\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 2, Page 151\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "z=0.5;      #Height of bed in m\n",
      "dt=0.5;     #ID of tube in m\n",
      "rhos=2.6;   #Density of catalyst in g/cm**3\n",
      "dpbar=100.; #Averge catalyst diameter in micrometer\n",
      "umf=0.01;   #Velocity at minimum fluidization condition in m/s\n",
      "uo=0.45;    #Superficial velocity in m/s\n",
      "dor=2.;     #Diameter of orifice in mm\n",
      "lor=30.;    #Pitch of perforated plate in mm\n",
      "g=9.80;     #Acceleration due to gravity in m/s**2\n",
      "pi=3.142857;\n",
      "\n",
      "#CALCULATION\n",
      "#Part(a).Bubble Size\n",
      "Nor=(2/math.sqrt(3))*(1/lor**2);\n",
      "dbo=5.5;\n",
      "\n",
      "#Method 1.Werther's procedure for finding bubble size\n",
      "z1=[0,5,10,20,30,50,70]\n",
      "db = [0.,0.,0.,0.,0.,0.,0.]\n",
      "n=len(z1);\n",
      "i=0; \n",
      "while i<n:\n",
      "    db[i]=0.853*((1+0.272*(uo-umf)*100)**(1/3.0))*(1+0.0684*z1[i])**1.21;\n",
      "    i=i+1;    \n",
      "\n",
      "db1=0.163;#Since bubble size starts at dbo=5.5cm at z=0, we shift the curve accordingly to z=0.5m\n",
      "\n",
      "#Method 2.Mori and Wen's procedure for finding bubble size\n",
      "dbm=0.65*((math.pi/4.0)*((dt*100)**2)*(uo-umf)*100)**0.4;\n",
      "db2=dbm-(dbm-dbo)*math.exp(-0.3**(z/dt));\n",
      "\n",
      "#Part(b).Bubble Velocity\n",
      "#Method 1.Procedure using Eqn.(12)\n",
      "ub1=1.6*((uo-umf)+1.13*db1**0.5)*(dt**1.35)+(0.711*(g*db1)**0.5);\n",
      "\n",
      "#Method 2.Werther's Procedure\n",
      "si=0.65;\n",
      "ub2=si*(uo-umf)+2*(dt**0.5)*(0.711*(g*db1)**0.5);\n",
      "\n",
      "#Using Eqn.(7) & Eqn.(8)\n",
      "ubr1=0.711*(g*db1)**0.5;\n",
      "ubr2=0.711*(g*db2/100.0)**0.5\n",
      "ub3=uo-umf+ubr1;\n",
      "ub4=uo-umf+ubr2;\n",
      "\n",
      "#OUTPUT\n",
      "print 'Bubble Size'\n",
      "print 'Initial bubble size from Fig.5.14 for %.2fm/s = %.2fcm'%(uo-umf,dbo)\n",
      "print '\\tMethod 1.Werthers procedure for finding bubble size'\n",
      "print '\\t\\tHeight of bed(cm)'\n",
      "print '\\t\\t\\tBubble size(cm)'\n",
      "m=len(z1);\n",
      "j=0;\n",
      "while j<m:\n",
      "    print '\\t\\t%d'%z1[j],\n",
      "    print '\\t\\t\\t\\t%.2f'%db[j]\n",
      "    j=j+1;\n",
      "\n",
      "print '\\tMethod 2.Mori and Wens procedure for finding bubble size'\n",
      "print '\\t\\tMaximum expected bubble size=%.2fcm'%dbm\n",
      "print '\\t\\tBubble size=%.0fcm'%db2\n",
      "print 'Bubble Velocity'\n",
      "print '\\tMethod 1.Procedure using Eqn.(12)'\n",
      "print '\\t\\tBubble velocity=%.2fm/s'%ub1\n",
      "print '\\tMethod 2.Werthers procedure'\n",
      "print '\\t\\tBubble velocity=%.2fm/s'%ub2\n",
      "print 'Comparing the above results with the expressions of the simple two-phase theory'\n",
      "print '\\tWerthers bubble size'\n",
      "print '\\tBubble rise velocity=%.2fm/s\\tBubble velocity=%.2fm/s'%(ubr1,ub3)\n",
      "print '\\tMori & Wens bubble size'\n",
      "print '\\tBubble rise velocity=%.1fm/s\\tBubble velocity=%.2fm/s'%(ubr2,ub4)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Bubble Size\n",
        "Initial bubble size from Fig.5.14 for 0.44m/s = 5.50cm\n",
        "\tMethod 1.Werthers procedure for finding bubble size\n",
        "\t\tHeight of bed(cm)\n",
        "\t\t\tBubble size(cm)\n",
        "\t\t0 \t\t\t\t2.00\n",
        "\t\t5 \t\t\t\t2.86\n",
        "\t\t10 \t\t\t\t3.77\n",
        "\t\t20 \t\t\t\t5.69\n",
        "\t\t30 \t\t\t\t7.73\n",
        "\t\t50 \t\t\t\t12.10\n",
        "\t\t70 \t\t\t\t16.77\n",
        "\tMethod 2.Mori and Wens procedure for finding bubble size\n",
        "\t\tMaximum expected bubble size=61.31cm\n",
        "\t\tBubble size=20cm\n",
        "Bubble Velocity\n",
        "\tMethod 1.Procedure using Eqn.(12)\n",
        "\t\tBubble velocity=1.46m/s\n",
        "\tMethod 2.Werthers procedure\n",
        "\t\tBubble velocity=1.56m/s\n",
        "Comparing the above results with the expressions of the simple two-phase theory\n",
        "\tWerthers bubble size\n",
        "\tBubble rise velocity=0.90m/s\tBubble velocity=1.34m/s\n",
        "\tMori & Wens bubble size\n",
        "\tBubble rise velocity=1.0m/s\tBubble velocity=1.43m/s\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3, Page 153\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "dpbar=53.;      #Average particle size in micrometer\n",
      "s=[1,2];        #Size of Bermuda rock in cm \n",
      "rhosbar=3200.;  #Average solid density of the coke-zircon mixture in kg/m**3\n",
      "ephsilonm=0.5;  #Void fraction for fixed bed\n",
      "ephsilonf=0.75; #Void fraction for bubbling bed\n",
      "rhogbar=0.64;   #Average density of gas in kg/m**3\n",
      "uo=14.;         #Superficial gas velocity in cm/s\n",
      "myu=5E-5;       #Viscosity of gas in kg/m s\n",
      "T=1000.;        #Temperature in degree C\n",
      "P=1.;           #Pressure in atm\n",
      "dt=91.5;        #ID of bed in cm\n",
      "sh=150.;        #Slumped height in cm\n",
      "\n",
      "#CALCULATION\n",
      "rhog2=1.2;      #Density of ambient air\n",
      "myu2=1.8E-5;    #Viscosity of ambient air\n",
      "rhos2=rhog2*(rhosbar/rhogbar);#For the requirement of constant density ratio\n",
      "m=((rhogbar*myu2)/(rhog2*myu))**(2./3);#Scale factor by usin Eqn.(16)\n",
      "u2=(m**0.5)*uo;  #Superficial gas velocity by using Eqn.(17)\n",
      "#OUTPUT\n",
      "print 'For the model use'\n",
      "print '\\tBed of ID %.2fcm\\tSlumped bed height of %.2fcm\\tPacked bed distributor consisting of %.2f-%.2fmm rock'%(m*dt,m*sh,m*s[0],m*s[1])\n",
      "print 'Fluidizing gas: ambient air at %.2fatm'%P\n",
      "print 'Solids: \\tzirconia, Average particle size=%.2fmicrometers'%(m*dpbar)\n",
      "print 'Entering gas:\\tSuperficial velocity=%.2fcm/s'%u2\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "For the model use\n",
        "\tBed of ID 30.45cm\tSlumped bed height of 49.92cm\tPacked bed distributor consisting of 0.33-0.67mm rock\n",
        "Fluidizing gas: ambient air at 1.00atm\n",
        "Solids: \tzirconia, Average particle size=17.64micrometers\n",
        "Entering gas:\tSuperficial velocity=8.08cm/s\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4, Page 159\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "dtb=20;          #ID of bench-scale reactor\n",
      "dtp=1;           #ID of pilot reactor\n",
      "dpbar=52;        #Average particle size in micrometer\n",
      "ephsilonm=0.45;  #Void fraction for fixed bed\n",
      "ephsilonmf=0.50; #Void fraction at minimum fluidization condition\n",
      "ephsilonmb=0.60; #Void fraction \n",
      "uo=30;           #Superficial gas velocity in cm/s\n",
      "Lmb=2;           #Length of fixed bed in m\n",
      "umf=0.33;        #Velocity at minimum fluidization condition in cm/s\n",
      "umb=1;           #Velocity at in cm/s\n",
      "db=3;            #Equilibrium bubble size in cm\n",
      "g=9.80;          #Acceleration due to gravity in m/s**2\n",
      "pi=3.142857;\n",
      "\n",
      "#CALCULATION\n",
      "ubr=0.711*(g*db/100)**0.5;#Rise velocity of bubble using Eqn.(7)\n",
      "\n",
      "#Bubble velocity for the bench unit\n",
      "ubb1=1.55*(((uo-umf)/100.0)+14.1*((db/100.0)+0.005))*((dtb/100.0)**0.32)+ubr;#Bubble velocity using Eqn.(11)\n",
      "si=1;\n",
      "ubb2=si*((uo-umf)/100.0)+(3.2*((dtb/100.0)**(1/3.0)))*ubr;#Bubble velocity using Eqn.(9)\n",
      "ubb=(ubb1+ubb2)/2;#Average bubble velocity\n",
      "\n",
      "#Bubble velocity for the pilot unit\n",
      "ubp1=1.55*(((uo-umf)/100.0)+14.1*((db/100.0)+0.005))*(dtp**0.32)+ubr;#Bubble velocity using Eqn.(11)\n",
      "si=1;\n",
      "ubp2=si*((uo-umf)/100)+(3.2*(dtp**(1/3)))*ubr;#Bubble velocity using Eqn.(9)\n",
      "ubp=(ubp1+ubp2)/2;#Average bubble velocity\n",
      "\n",
      "#Rise velocity of upflowing emulsion\n",
      "ueb=ubb-ubr;#For the bench unit\n",
      "uep=ubp-ubr;#For the pilot unit\n",
      "\n",
      "#Scale-Up Alternative 1.\n",
      "dteb=20;#Effective bubble diameter\n",
      "dib=[5,10,15,20];#Different outside diameters\n",
      "n=len(dib);\n",
      "li = [0.,0.,0.,0.]\n",
      "i=0;\n",
      "while i<n:\n",
      "    li[i]=math.sqrt(((pi*dib[i]*dteb)/4)+((pi/4)*(dib[i])**2));#Pitch using Eqn.(13)\n",
      "    i=i+1;\n",
      "\n",
      "#Scale-Up Alternative 2.\n",
      "Lmp=Lmb*(ubp/ubb);#Static bed height of commercial unit\n",
      "dtep=100.0;#Effective bubble diameter\n",
      "dip=[10,15,20,25];#Different outside diameters\n",
      "m=len(dip);\n",
      "i=0;\n",
      "lip = [0.,0.,0.,0.]\n",
      "while i<m:\n",
      "    lip[i]=math.sqrt(((math.pi*dip[i]*dtep)/4.0)+(math.pi/4.0)*dip[i]);#Pitch using Eqn.(13)\n",
      "    i=i+1;\n",
      "\n",
      "#Height of Bubbling beds\n",
      "#For bench unit\n",
      "deltab=((uo/100.0)-(umb/100.0))/(ubb-(umb/100.0));#Fraction of bed in bubbles using Eqn.(28)\n",
      "ephsilonfb=deltab+(1-deltab)*ephsilonmb;#Void fraction of bubbling bed using Eqn.(20)\n",
      "Lfb=Lmb*(1-ephsilonm)/(1-ephsilonfb);#Hieght of bubbling bed usnig Eqn.(19)\n",
      "#For pilot unit\n",
      "deltap=((uo/100.0)-(umb/100.0))/(ubp-(umb/100.0));#Fraction of bed in bubbles using Eqn.(28)\n",
      "ephsilonfp=deltap+(1-deltap)*ephsilonmb;#Void fraction of bubbling bed using Eqn.(20)\n",
      "Lfp=Lmp*(1-ephsilonm)/(1-ephsilonfp);#Hieght of bubbling bed usnig Eqn.(19)\n",
      "\n",
      "#OUTPUT\n",
      "print 'Rise velocity of bubble=%.3fm/s'%ubr\n",
      "print 'For the bench unit'\n",
      "print '\\tWith Eqn.(11), Rise velocity=%.3fm/s'%ubb1\n",
      "print '\\tWith Werthers procedure, Rise velocity=%.2fm/s'%ubb2\n",
      "print '\\tAverage rise velocity=%.2fm/s'%ubb\n",
      "print '\\tRise velocity of upflowing emulsion=%.2fm/s'%ueb\n",
      "print 'For the pilot unit'\n",
      "print '\\tWith Eqn.(11), Rise velocity=%.2fm/s'%ubp1\n",
      "print '\\tWith Werthers procedure, Rise velocity=%.2fm/s'%ubp2\n",
      "print '\\tAverage rise velocity=%.2fm/s'%ubp\n",
      "print '\\tRise velocity of upflowing emulsion=%.2fm/s'%uep\n",
      "print 'Scale-Up Alternative 1.'\n",
      "print '\\tOuter diameter of tube(cm)'\n",
      "print '\\tPitch(cm)'\n",
      "n=len(dib);\n",
      "j=0;\n",
      "while j<n:\n",
      "    print '\\t\\t%d'%dib[j],\n",
      "    print '\\t\\t\\t%.2f'%li[j]\n",
      "    j=j+1;\n",
      "\n",
      "print '\\tSuitable arrangement'\n",
      "print '\\t\\tOuter Diameter=%dcm\\tPitch:Diameter ratio=%.2f'%(dib[1],(li[1]/dib[1]))\n",
      "print 'Scale-Up Alternative 2.'\n",
      "print '\\tStatic bed height for commercial unit=%fm'%Lmp\n",
      "print '\\tOuter diameter of tube(cm)'\n",
      "print '\\tPitch(cm)'\n",
      "n=len(dip);\n",
      "j=0;\n",
      "\n",
      "while j<n:\n",
      "    print '\\t\\t%d'%dip[j],\n",
      "    print '\\t\\t\\t%.2f'%lip[j]\n",
      "    j=j+1;\n",
      "\n",
      "print '\\tSuitable arrangement'\n",
      "print '\\t\\tOuter Diameter=%dcm\\tPitch:Diameter ratio=%.2f'%(dip[2],(lip[2]/dip[2]))\n",
      "print '\\t\\t\\t\\tFraction of bed in bubbles\\tVoid fraction of bed\\tStatic bed height(m)\\tHeight of bubbling bed(m)'\n",
      "print '\\t\\t\\t\\t---------------------------------------------------------------------------------------------------------'\n",
      "print 'Bench unit\\tID=%fm\\t%f\\t\\t\\t%f\\t\\t%f\\t\\t%f'%(dtb/100.,deltab,ephsilonfb,Lmb,Lfb)\n",
      "print 'Commercial unit\\tID=%fm\\t%f\\t\\t\\t%f\\t\\t%f\\t\\t%f'%(dtp,deltap,ephsilonfp,Lmp,Lfp)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Rise velocity of bubble=0.386m/s\n",
        "For the bench unit\n",
        "\tWith Eqn.(11), Rise velocity=1.117m/s\n",
        "\tWith Werthers procedure, Rise velocity=1.02m/s\n",
        "\tAverage rise velocity=1.07m/s\n",
        "\tRise velocity of upflowing emulsion=0.68m/s\n",
        "For the pilot unit\n",
        "\tWith Eqn.(11), Rise velocity=1.61m/s\n",
        "\tWith Werthers procedure, Rise velocity=1.53m/s\n",
        "\tAverage rise velocity=1.57m/s\n",
        "\tRise velocity of upflowing emulsion=1.18m/s\n",
        "Scale-Up Alternative 1.\n",
        "\tOuter diameter of tube(cm)\n",
        "\tPitch(cm)\n",
        "\t\t5 \t\t\t9.91\n",
        "\t\t10 \t\t\t15.35\n",
        "\t\t15 \t\t\t20.31\n",
        "\t\t20 \t\t\t25.07\n",
        "\tSuitable arrangement\n",
        "\t\tOuter Diameter=10cm\tPitch:Diameter ratio=1.54\n",
        "Scale-Up Alternative 2.\n",
        "\tStatic bed height for commercial unit=2.941439m\n",
        "\tOuter diameter of tube(cm)\n",
        "\tPitch(cm)\n",
        "\t\t10 \t\t\t28.16\n",
        "\t\t15 \t\t\t34.49\n",
        "\t\t20 \t\t\t39.83\n",
        "\t\t25 \t\t\t44.53\n",
        "\tSuitable arrangement\n",
        "\t\tOuter Diameter=20cm\tPitch:Diameter ratio=1.99\n",
        "\t\t\t\tFraction of bed in bubbles\tVoid fraction of bed\tStatic bed height(m)\tHeight of bubbling bed(m)\n",
        "\t\t\t\t---------------------------------------------------------------------------------------------------------\n",
        "Bench unit\tID=0.200000m\t0.274171\t\t\t0.709668\t\t2.000000\t\t3.788769\n",
        "Commercial unit\tID=1.000000m\t0.185857\t\t\t0.674343\t\t2.941439\t\t4.967774\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 5, Page 161\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "dtb=20;          #ID of bench-scale reactor\n",
      "dtp=1;           #ID of pilot reactor\n",
      "dpbar=200;       #Average particle size in micrometer\n",
      "ephsilonmf=0.50; #Void fraction at minimum fluidization condition\n",
      "ephsilonmb=0.50; #Void fraction \n",
      "uo=30;           #Superficial gas velocity in cm/s\n",
      "Lmb=2;           #Length of fixed bed in m\n",
      "umf=3;           #Velocity at minimum fluidization condition in cm/s\n",
      "umb=3;           #Velocity at in cm/s\n",
      "g=9.80;          #Acceleration due to gravity in m/s**2\n",
      "pi=3.142857;\n",
      "\n",
      "#CALCULATION\n",
      "#In the small bench unit\n",
      "c=1;\n",
      "ubb=c*((uo-umf)/100.0)+0.35*(g*(dtb/100.0))**0.5;#Velocity using Eqn.(5.22)\n",
      "zsb=60*(dtb)**0.175;#Height using Eqn.(5.24)\n",
      "\n",
      "#In the large pilot unit\n",
      "ubp=c*((uo-umf)/100.0)+0.35*(g*dtp)**0.5;#Velocity using Eqn.(5.22)\n",
      "zsp=60*(dtp*100)**0.175;#Height using Eqn.(5.24)\n",
      "\n",
      "#OUTPUT\n",
      "print 'Condition at which bubbles transform into slugs'\n",
      "print 'For tha small bench unit\\t\\tVelocity=%fm/s\\t\\tHeight above distributor plate=%fm'%(ubb,zsb/100.)\n",
      "print 'For tha large pilot unit\\t\\tVelocity=%fm/s\\t\\tHeight above distributor plate=%fm'%(ubp,zsp/100.);\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Condition at which bubbles transform into slugs\n",
        "For tha small bench unit\t\tVelocity=0.760000m/s\t\tHeight above distributor plate=1.013518m\n",
        "For tha large pilot unit\t\tVelocity=1.365673m/s\t\tHeight above distributor plate=1.343233m\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}