summaryrefslogtreecommitdiff
path: root/Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch3.ipynb
blob: 72abab333f5b95017f8580d4dd9fc84f34e37624 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
{
 "metadata": {
  "name": "",
  "signature": "sha256:c2d23a740208e3823c43d8afcfc0ef305894f28fcd5f9e9793f1f1c6fe8b25f1"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3 : Fluidization and Mapping of Regimes"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1, Page 68\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "weight = [0,60,150,270,330,360.0];        # Weight in grams for the oversized particles\n",
      "psize = [50,75,100,125,150,175];          #PSD in micrometers\n",
      "\n",
      "#CALCULATION\n",
      "l = len(psize); # To obtain the size of input array\n",
      "# Computation of sauter mean diameter for the given PSD\n",
      "i = 0;\n",
      "dpi = [0,0,0,0,0,0]\n",
      "weightf = [0,0,0,0,0,0]\n",
      "dp = [0,0,0,0,0,0]\n",
      "while i<l-1:\n",
      "        dpi[i]=(psize[i]+ psize[i+1])/2.0;\n",
      "        weightf[i]=(weight[i+1]-weight[i])/weight[5];    \n",
      "        dp[i]=weightf[i]/float(dpi[i]);    \n",
      "        i=i+1;\n",
      "\n",
      "dpbar=1/sum(dp);                        #Calculation of average particle daimeter Eq.(15)\n",
      "\n",
      "#OUTPUT\n",
      "print '\\n The Sauter mean diameter of the material with the given particle size distribution = %.0f micrometer'%dpbar\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        " The Sauter mean diameter of the material with the given particle size distribution = 98 micrometer\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2, Page 76\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Estimation of Minimum fluidizing velocity\n",
      "\n",
      "#INPUT\n",
      "ephsilon=0.55;     #Void fraction of bed\n",
      "rhog=0.0012;       #Density of gas in g/cc\n",
      "myu=.00018;        #Viscosity of gas in g/cm s\n",
      "dpbar=0.016;       #Mean diameter of solids in centimeter\n",
      "phis=0.67;         #Sphericity of solids\n",
      "rhos=2.6;          #Density of solids in g/cc\n",
      "g=980;             #Acceleration due to gravity in square cm/s**2\n",
      "\n",
      "#CALCULATION\n",
      "#Computation of umf using the simplified equation for small particles\n",
      "umf=((dpbar**2)*(rhos-rhog)*g*(ephsilon**3)*(phis**2))/(150*myu*(1-ephsilon));#Simplified equation to calculate minimum fluidizing velocity \n",
      "                                                                              #for small particles Eq.(21)\n",
      "Re=(dpbar*umf*rhog)/myu;#To calculate Reynolds number for particle\n",
      "\n",
      "#Computation of umf if neither void fraction of bed nor sphericity is known\n",
      "c1=28.7\n",
      "c2=0.0494;                      #Value of constants from Table 4, page 70\n",
      "umf1=(myu/(dpbar*rhog))*(((c1**2)+((c2*(dpbar**3)*rhog*(rhos-rhog)*g)/(myu**2)))**0.5-c1); #Equation to calculate minimum fluidizing velocity \n",
      "                                                                                           #for coarse particles Eq.(25)\n",
      "err=((umf-umf1)/umf)*100;       #Calculation of error from experimental value\n",
      "\n",
      "#OUTPUT\n",
      "if Re<20:\n",
      "\tprint 'The particle Reynolds no = %f'%Re\n",
      "\tprint 'The simplified equation used for calculating minimum fluidizing velocity is valid.'\n",
      "\n",
      "print 'The minimum fluidizing velocity by simplified equation for small particles = %.2fcm/s'%umf\n",
      "print 'The minimum fluidizing velocity by equation for coarse partilces = %.2fcm/s'%umf1\n",
      "print 'This value is %d percent below the experimentally reported value.'%err\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The particle Reynolds no = 0.427493\n",
        "The simplified equation used for calculating minimum fluidizing velocity is valid.\n",
        "The minimum fluidizing velocity by simplified equation for small particles = 4.01cm/s\n",
        "The minimum fluidizing velocity by equation for coarse partilces = 3.10cm/s\n",
        "This value is 22 percent below the experimentally reported value.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3, Page 82\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "rhog=1.2e-3;    #Density of air in g/cc\n",
      "myu=1.8e-4      #Viscosity of air in g/cm s\n",
      "dpbar=0.016     #Mean diameter of solids in centimeter\n",
      "phis=0.67;      #Sphericity of solids\n",
      "rhos=2.6;       #Density of solids in g/cc\n",
      "g=980           #Acceleration due to gravity in square cm/s**2\n",
      "\n",
      "#CALCULATION\n",
      "dpstar=dpbar*((rhog*(rhos-rhog)*g)/myu**2)**(1/3.0);              #Calculation of dimensionless particle size Eq.(31)\n",
      "utstar=((18/(dpstar**2))+(2.335-(1.744*phis))/(dpstar**0.5))**-1; #Calculation of dimensionless gas velocity Eq.(33)\n",
      "ut=utstar*((myu*(rhos-rhog)*g)/rhog**2)**(1/3.0);                 #Calculation of terminal velocity of falling particles Eq.(32)\n",
      "\n",
      "\n",
      "#OUTPUT\n",
      "print 'The dimensionless particle size = %.2f'%dpstar\n",
      "print 'The dimensionless gas velocity = %.3f'%utstar\n",
      "print 'The terminal velocity of falling particles = %d cm/s'%ut\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The dimensionless particle size = 7.28\n",
        "The dimensionless gas velocity = 1.296\n",
        "The terminal velocity of falling particles = 88 cm/s\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4, Page 91\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "rhos=1.5;                 #Density of Solid in g/cc\n",
      "uo1=40; uo2=80;           #Superficial gas velocity in cm/s\n",
      "dp1=0.006; dp2=0.045;     #Particle size in centimeter\n",
      "rhog1=1.5E-3; rhog2=1E-3; #Density of gas in g/cc\n",
      "myu1=2E-4; myu2=2.5E-4;   #Viscosity of air in g/cm s\n",
      "g=980;                    #Acceleration due to gravity in square cm/s**2\n",
      "\n",
      "#CALCULATION\n",
      "#for smaller particles\n",
      "dpstar1=dp1*((rhog1*(rhos-rhog1)*g)/myu1**2)**(1/3.0);     #Calculation of dimensionless particle diamter Eq.(31)\n",
      "uostar1=uo1*((rhog1**2)/((myu1)*(rhos-rhog1)*g))**(1/3.0);\n",
      "uostar2=uo2*((rhog1**2)/((myu1)*(rhos-rhog1)*g))**(1/3.0); #Calculation of dimensionless superficial gas velocity Eq.(32)\n",
      "\n",
      "#for larger particles \n",
      "dpstar2=dp2*((rhog2*(rhos-rhog2)*g)/myu2**2)**(1/3.0);     #Calculation of dimensionless particle diamter Eq.(31)\n",
      "uostar3=uo1*((rhog2**2)/((myu2)*(rhos-rhog2)*g))**(1/3.0);\n",
      "uostar4=uo2*((rhog2**2)/((myu2)*(rhos-rhog2)*g))**(1/3.0); #Calculation of dimensionless superficial gas velocity Eq.(32)\n",
      "\n",
      "\n",
      "#OUTPUT\n",
      "print 'For particle of size %.3f centimeter'%dp1\n",
      "print 'The dimensionless particle diameter = %.2f'%dpstar1\n",
      "print 'The dimensionless superficial gas velocity = %.4fcm/s(for superficial gas velocity of %dcm/s)'%(uostar1,uo1)\n",
      "print 'The dimensionless superficial gas velocity = %.3fcm/s(for superficial gas velocity of %dcm/s)'%(uostar2,uo2)\n",
      "print 'From Fig.16(page 89)comparing u*=%.4f vs dp*=%.2f'%(uostar1,dpstar1)\n",
      "print 'For Superficial gas velocity =%d Mode of Fluidization:Onset of turbulent fluidization in an ordinary bubbling bed'%(uo1)\n",
      "print 'From Fig.16(page 89)comparing u* =%.3f vs dp* =%f'%(uostar2,dpstar1)\n",
      "print 'For Superficial gas velocity =%f Mode of Fluidization:Fast fluidization(requires a circulating solid system)'%(uo2)\n",
      "print 'For particle of size %f centimeter'%(dp2)\n",
      "print 'The dimensionless particle diameter = %f'%(dpstar2)\n",
      "print 'The dimensionless superficial gas velocity = %fcm/s(for superficial gas velocity of %fcm/s)'%(uostar3,uo1)\n",
      "print 'The dimensionless superficial gas velocity = %fcm/s(for superficial gas velocity of %fcm/s)'%(uostar4,uo2)\n",
      "print 'From Fig.16(page 89)comparing u*=%f vs dp*=%f'%(uostar3,dpstar2)\n",
      "print 'For Superficial gas velocity =%f Mode of Fluidization:Bublling Fluidization'%(uo1)\n",
      "print 'From Fig.16(page 89)comparing u* =%f vs dp* =%f'%(uostar4,dpstar2)\n",
      "print 'For Superficial gas velocity =%f Mode of Fluidization:Bubbling Fluidization'%(uo2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "For particle of size 0.006 centimeter\n",
        "The dimensionless particle diameter = 2.28\n",
        "The dimensionless superficial gas velocity = 0.7885cm/s(for superficial gas velocity of 40cm/s)\n",
        "The dimensionless superficial gas velocity = 1.577cm/s(for superficial gas velocity of 80cm/s)\n",
        "From Fig.16(page 89)comparing u*=0.7885 vs dp*=2.28\n",
        "For Superficial gas velocity =40 Mode of Fluidization:Onset of turbulent fluidization in an ordinary bubbling bed\n",
        "From Fig.16(page 89)comparing u* =1.577 vs dp* =2.282737\n",
        "For Superficial gas velocity =80.000000 Mode of Fluidization:Fast fluidization(requires a circulating solid system)\n",
        "For particle of size 0.045000 centimeter\n",
        "The dimensionless particle diameter = 12.890262\n",
        "The dimensionless superficial gas velocity = 0.558561cm/s(for superficial gas velocity of 40.000000cm/s)\n",
        "The dimensionless superficial gas velocity = 1.117122cm/s(for superficial gas velocity of 80.000000cm/s)\n",
        "From Fig.16(page 89)comparing u*=0.558561 vs dp*=12.890262\n",
        "For Superficial gas velocity =40.000000 Mode of Fluidization:Bublling Fluidization\n",
        "From Fig.16(page 89)comparing u* =1.117122 vs dp* =12.890262\n",
        "For Superficial gas velocity =80.000000 Mode of Fluidization:Bubbling Fluidization\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}