1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
{
"metadata": {
"name": "",
"signature": "sha256:1a37ab741ccda7f67c7de1085d3807de9fa5a11a3111916ad9502a04f1c58721"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 16 : Design for Physical Operations"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1, Page 404\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"T=1000.; #Operating temperature of calciner in degree celcius\n",
"deltaHr=1795.; #Heat of reaction in kJ/kg\n",
"M1=0.1; #Molecular weight of Calcium carbonate in kg/mol\n",
"M2=0.056; #Molecular weight of CaO in kg/mol\n",
"M3=0.044; #Molecular weight of Carbon dioxide in kg/mol\n",
"M4=0.029; #Molecular weight of Air in kg/mol\n",
"M5=0.029; #Molecular weight of Combustion gas in kg/mol\n",
"Cp1=1.13; #Specific heat of Calcium carbonate in kJ/kg K\n",
"Cp2=0.88; #Specific heat of CaO in kJ/kg K\n",
"Cp3=1.13; #Specific heat of Carbon dioxide in kJ/kg K\n",
"Cp4=1.00; #Specific heat of Air in kJ/kg K\n",
"Cp5=1.13; #Specific heat of Calcium carbonate in kJ/kg K\n",
"Tf=20.; #Temperature of feed in degree celcius\n",
"ma=15.; #Air required per kg of fuel in kg\n",
"Hc=41800.; #Net combustion heat of fuel in kJ/kg\n",
"Tpi=20.; #Initial temperature of solids in degree C\n",
"Tgi=1000.; #Initial temperature of gas in degree C\n",
"\n",
"#CALCULATION\n",
"mc=1;#Based on 1 kg of Calcium carbonate\n",
"B=(1/(Hc-(ma+mc)*Cp5*(T-Tpi)))*(M3*Cp3*(T-Tf)+M2*Cp2*(T-Tf)+deltaHr)#Fuel consumption(kg fuel/kg calcium carbonate)\n",
"B1=B*M3/M2;#Fuel consumption(kg fuel/kg Cao)\n",
"H=Hc*B1;#Heat required for calcination\n",
"eta=deltaHr/(B*Hc);#Thermal efficiency\n",
"\n",
"#OUTPUT\n",
"print 'Fuel consumption:%f kg fuel/kg Cao'%B1\n",
"print 'Heat requirement for calcination:%f kJ/kg Cao'%H\n",
"print 'Thermal efficiency:%f percentage'%(eta*100)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Fuel consumption:0.061731 kg fuel/kg Cao\n",
"Heat requirement for calcination:2580.366029 kJ/kg Cao\n",
"Thermal efficiency:54.657251 percentage\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2, Page 405\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from scipy.optimize import fsolve\n",
"import math\n",
"\n",
"#INPUT\n",
"F = 400. #Feed rate of Calcium carbonate in tons/day\n",
"T = 1000. #Operating temperature of calciner in degree celcius\n",
"deltaHr = 1795.#Heat of reaction in kJ/kg\n",
"M1 = 0.1 #Molecular weight of Calcium carbonate in kg/mol\n",
"M2 = 0.056 #Molecular weight of CaO in kg/mol\n",
"M3 = 0.044 #Molecular weight of Carbon dioxide in kg/mol\n",
"M4 = 0.029 #Molecular weight of Air in kg/mol\n",
"M5 = 0.029 #Molecular weight of Combustion gas in kg/mol\n",
"Cp1 = 1.13 #Specific heat of Calcium carbonate in kJ/kg K\n",
"Cp2 = 0.88 #Specific heat of CaO in kJ/kg K\n",
"Cp3 = 1.13 #Specific heat of Carbon dioxide in kJ/kg K\n",
"Cp4 = 1.00 #Specific heat of Air in kJ/kg K\n",
"Cp5 = 1.17 #Specific heat of Combustion gas in kJ/kg K\n",
"Tf = 20. #Temperature of feed in degree celcius\n",
"ma = 15. #Air required per kg of fuel in kg\n",
"uo = 0.8 #Superficial gas velocity in m/s\n",
"Hc = 41800. #Net combustion heat of fuel in kJ/kg\n",
"Tpi = 20. #Initial temperature of solids in degree C\n",
"Tgi = 1000. #Initial temperature of gas in degree C\n",
"rhoa = 1.293 #Density of air in kg/m**3\n",
"pi = 3.14\n",
"\n",
"#CALCULATION\n",
"mc = 1. #Based on 1 kg of Calcium carbonate\n",
"Bguess = 2. #Guess value of B\n",
"def solver_func(B): #Function defined for solving the system\n",
" phi = ((ma+mc)*Cp5*B+(M3*Cp3))/Cp1\n",
" T3 = (Tpi+(phi+phi**2+phi**3)*Tgi)/(1+phi+phi**2+phi**3)\n",
" phiplus = 30.6*B\n",
" Tr = (T+Tpi*phiplus)/(1+phiplus)\n",
" return Hc*B+Cp3*(T3-Tpi)+ma*B*Cp4*(Tr-20)-(ma+mc)*Cp5*(T-Tpi)-M3*Cp3*(T-Tpi)-M2*Cp2*(T-Tpi)-deltaHr\n",
" #fn = (1/20800)*(2470-T3-13.34*(Tr-20))\n",
"\n",
"B = fsolve(solver_func,1E-6)#Using inbuilt function fsolve for solving Eqn.(23) for tou\n",
"phi = ((ma+mc)*Cp5*B+(M3*Cp3))/Cp1\n",
"#Temperature of various stages\n",
"T1 = (Tpi+(phi)*Tgi)/(1+phi)\n",
"T2 = (Tpi+(phi+phi**2)*Tgi)/(1+phi+phi**2)\n",
"T3 = (Tpi+(phi+phi**2+phi**3)*Tgi)/(1+phi+phi**2+phi**3)\n",
"phiplus = 30.6*B\n",
"Tr = (T+Tpi*phiplus)/(1+phiplus)\n",
"eta = deltaHr/(B*Hc) #Thermal efficiency\n",
"H = B*Hc/M2 #Heat requirement\n",
"#For lower heat recovery section\n",
"Ql = (F*10**3/(24*3600))*B*ma/(rhoa*(273/(Tr+273)))#Volumetric flow rate of gas in the lower heat recovery section\n",
"dtl = math.sqrt(4/pi*Ql/uo)#Diameter of lower bed\n",
"#For calcination section\n",
"Qc = (F*10**3/(24*3600))*B*ma/(rhoa*(273/(T+273)))#Volumetric flow rate of gas in the calcination section\n",
"dtc = math.sqrt(4/pi*Qc/uo)#Diameter of calcination section\n",
"#For I stage\n",
"Q1 = (F*10**3/(24*3600))*B*ma/(rhoa*(273/(T1+273)))#Volumetric flow rate of gas in the I stage\n",
"dt1 = math.sqrt(4/pi*Q1/uo)#Diameter of I stage\n",
"#For II stage\n",
"Q2 = (F*10**3/(24*3600))*B*ma/(rhoa*(273/(T2+273)))#Volumetric flow rate of gas in the II stage\n",
"dt2 = math.sqrt(4/pi*Q2/uo)#Diameter of II stage\n",
"#For III stage\n",
"Q3 = (F*10**3/(24*3600))*B*ma/(rhoa*(273/(T3+273)))#Volumetric flow rate of gas in the III stage\n",
"dt3 = math.sqrt(4/pi*Q3/uo)#Diameter of III stage\n",
"\n",
"#OUTPUT\n",
"print '\\nDiameter of lower bed:%fm'%(dtl)\n",
"print '\\nDiameter of calcination section:%fm'%(dtc)\n",
"print '\\nBed no.\\t\\t1\\t2\\t\\t3'\n",
"print '\\nDiameter(m)%f\\t%f\\t%f'%(dt1,dt2,dt3)\n",
"\n",
"#The value of diameter of each section is largely deviating from the values in the textbook. This is because the fuel consumption B have not been included in the energy balance equation. And the value of molecular weight is wrong by one decimal point.\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Diameter of lower bed:7.097814m\n",
"\n",
"Diameter of calcination section:13.351483m\n",
"\n",
"Bed no.\t\t1\t2\t\t3\n",
"\n",
"Diameter(m)12.728715\t13.270865\t13.340712\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3, Page 413\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"T=20; #Temeprature in degree C\n",
"M=0.018; #Molecular weight of water in kg/mol\n",
"Q=10; #Flow rate of dry air in m**3/s\n",
"R=82.06E-6; #Universal gas constant\n",
"pi=0.0001; #Initial moisture content in atm\n",
"pj=0.01; #Final moisture content in atm\n",
"\n",
"#CALCULATION\n",
"a=Q*(273+T)/273; #Term At*uo\n",
"b=a*M/(R*(T+273));#Term C*At*uo\n",
"#The value of slope can be found only by graphical mehtod. Hence it has been taken directly from the book(Page no.414,Fig.E3)\n",
"m=10.2;\n",
"Fo=b/m; #Flow rate of solids\n",
"Q3=(b/Fo)*(pj-pi);#Moisture content of leaving solids\n",
"\n",
"#OUTPUT\n",
"print '\\nMoisture content of leaving solids:%.3f kg H2O/kg dry solids'%Q3\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Moisture content of leaving solids:0.101 kg H2O/kg dry solids\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4, Page 422\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from scipy.optimize import fsolve \n",
"import math \n",
"\n",
"\n",
"\n",
"#INPUT\n",
"Qfi = 0.20 #Initial moisture fraction\n",
"Qfbar = 0.04 #Average final moisture fraction\n",
"rhos = 2000. #Density of solid in kg/m**3\n",
"Cps = 0.84 #Specific heat of solids in kJ/kg K\n",
"Fo = 7.6E-4 #Flow rate of solids in kg/m**3\n",
"Tsi = 20. #Inital temperature of solids in degree C\n",
"rhog = 1. #Density of gas in kg/m**3\n",
"Cpg = 1 #Specific heat of gas in kJ/kg K\n",
"uo = 0.3 #Superficial gas velocity in m/s\n",
"Tgi = 200 #Initial temperature of gas in degee C\n",
"L = 2370 #Enthalpy of liquid in kJ/kg\n",
"Cpl = 4.2 #Specific heat of liquid in kJ/kg K\n",
"dt = 0.1 #Diameter of reactor in m\n",
"Lm = 0.1 #Length of fixed bed in m\n",
"ephsilonm = 0.45 #Void fraction of fixed bed\n",
"pi = 3.14\n",
"Fo1 = 1 #Feed rate for commercial-scale reactor in kg/s\n",
"\n",
"#CALCULATION\n",
"#(a)Bed temperature\n",
"Teguess = 50#Guess value of Te\n",
"def solver_func(Te):#Function defined for solving the system\n",
" return (pi/4.)*dt**2*uo*rhog*Cpg*(Tgi-Te)-Fo*(Qfi-Qfbar)*(L+Cpl*(Te-Tsi))-Fo*Cps*(Te-Tsi)\n",
"\n",
"Te = fsolve(solver_func,Teguess)\n",
"\n",
"#(b)Drying time for a particle\n",
"xguess = 2#Guess value of x, ie term tou/tbar\n",
"def solver_func1(x): #Function defined for solving the system\n",
" return 1-(Qfbar/Qfi)-(1-math.exp(-x))/x\n",
"\n",
"\n",
"x = fsolve(solver_func1,xguess)\n",
"W = (pi/4.)*dt**2*Lm*(1-ephsilonm)*rhos#Weight of soilds in bed\n",
"tbar = W/Fo#Mean residence time of solids from Eqn.(59)\n",
"tou = tbar*x#Time for complete drying of a particle\n",
"\n",
"#(c)Commercial-scale dryer\n",
"W1 = Fo1*tbar\n",
"Atguess = 5#Guess value of area\n",
"def solver_func3(At): #Function defined for solving the system\n",
" return At*uo*rhog*Cpg*(Tgi-Te)-Fo1*(Qfi-Qfbar)*(L+Cpl*(Te-Tsi))-Fo1*Cps*(Te-Tsi)\n",
"\n",
"At = fsolve(solver_func3,Atguess)\n",
"dt1 = math.sqrt(4/pi*At)#Diameter of commercial-scale dryer\n",
"Q1 = At*uo*rhog#Flow rate necessary for the operation\n",
"\n",
"#OUTPUT\n",
"print 'Bed temperature:%f degree C'%(Te)\n",
"print 'Time for complete drying of particle:%fs'%(tou)\n",
"print 'Flow rate of gas necessary for Commercial-scale dryer:%fkg/s'%(Q1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Bed temperature:58.728126 degree C\n",
"Time for complete drying of particle:527.431202s\n",
"Flow rate of gas necessary for Commercial-scale dryer:3.098684kg/s\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5, Page 425\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"\n",
"#Variable Declaration\n",
"rhos=1600.; #Density of solid in kg/m**3\n",
"Cps=1.25; #Specific heat of solids in kJ/kg K\n",
"Fo=0.5; #Flow rate of solids in kg/s\n",
"Tsi=20.; #Inital temperature of solids in degree C\n",
"Qwi=1.; #Initial moisture fraction in water\n",
"Qwf=0.2; #Final moisture fraction in water\n",
"Qhi=1.1; #Initial moisture fraction in heptane\n",
"Qhf=0.1; #Final moisture fraction in heptane\n",
"Tgi=240.; #Initial temperature of gas in degee C\n",
"Te=110.; #Bed temperature in degree C\n",
"ephsilonm=0.45; #Void fraction of fixed bed\n",
"ephsilonf=0.75; #Void fraction of fluidized bed\n",
"uo=0.6; #Superficial gas velocity in m/s\n",
"di=0.08; #Diameter of tubes in m\n",
"li=0.2; #Pitch for square arrangement\n",
"hw=400.; #Heat transfer coefficient in W/m**2 K\n",
"Tc=238.; #Temperature at which steam condenses in degree C\n",
"#Specific heats in kJ/kg K\n",
"Cwl=4.18; #Water liquid\n",
"Cwv=1.92; #Water vapor\n",
"Chl=2.05; #Heptane liquid\n",
"Chv=1.67; #Heptane vapor\n",
"#Latent heat of vaporization in kJ/kg\n",
"Lw=2260.; #Water\n",
"Lh=326.; #Heptane\n",
"#Density of vapor in kg/m**3 at operating conditions\n",
"rhow=0.56; #Water\n",
"rhoh=3.1; #Heptane\n",
"Lf=1.5; #Length of fixed bed in m\n",
"t=140.; #Half-life of heptane in s\n",
"L=1.5; #Length of tubes in heat exchanger\n",
"pi=3.14;\n",
"\n",
"#CALCULATION\n",
"#(a) Dryer without Internals\n",
"xw=(Qwi-Qwf)/(Qhi-Qhf); #Water-heptane weight ratio\n",
"xv=((Qwi-Qwf)/18.)/((Qhi-Qhf)/100.); #Water-heptane volume ratio\n",
"T=(Qwi-Qwf)/18.+(Qhi-Qhf)/100.; #Total volume\n",
"rhogbar=((Qwi-Qwf)/18.)/T*rhow+((Qhi-Qhf)/100.)/T*rhoh; #Mean density of the vapor mixture\n",
"Cpgbar=(((Qwi-Qwf)/18.)/T)*rhow*Cwv+(((Qhi-Qhf)/100.)/T)*rhoh*Cwv;#Mean specific heat of vapor mixture\n",
"#Volumetric flow of recycle gas to the dryer in m**3/s from Eqn.(53)\n",
"x=(Cpgbar*(Tgi-Te))**-1*(Fo*(Qwi-Qwf)*(Lw+Cwl*(Te-Tsi))+Fo*(Qhi-Qhf)*(Lh+Chl*(Te-Tsi))+Fo*(Cps*(Te-Tsi)));\n",
"r=Fo*((Qwi-Qwf)/rhow+(Qhi-Qhf)/rhoh); #Rate of formation of vapor in bed\n",
"uo1=uo*(x/(x+r)); #Superficial velocity just above the distributor\n",
"At=x/uo1; #Cross-sectional area of bed\n",
"dt=math.sqrt(4./pi*At); #Diameter of bed\n",
"B=-math.log(Qwf/Qwi)/t; #Bed height from Eqn.(63)\n",
"tbar=((Qhi/Qhf)-1)/B; #Mean residence time of solids\n",
"W=Fo*tbar; #Weight of bed\n",
"Lm=W/(At*(1-ephsilonm)*rhos); #Static bed height\n",
"Lf=(Lm*(1-ephsilonm))/(1-ephsilonf); #Height of fluidized bed\n",
"\n",
"#(b) Dryer with internal heaters\n",
"f=1/8.0; #Flow rate is 1/8th the flow rate of recirculation gas as in part (a)\n",
"x1=f*x; #Volumetric flow of recycle gas to the dryer in m**3/s from Eqn.(53)\n",
"uo2=uo*(x1/float(x1+r)); #Superficial velocity just above the distributor\n",
"Abed=x1/uo2; #Cross-sectional area of bed\n",
"q=(Fo*(Qwi-Qwf)*(Lw+Cwl*(Te-Tsi))+Fo*(Qhi-Qhf)*(Lh+Chl*(Te-Tsi))+Fo*(Cps*(Te-Tsi)))-Abed*uo2*Cpgbar*(Tgi-Te);#Heat to be added from energy balance of Eqn.(53)\n",
"Aw=q*10**3/(hw*(Tc-Te));#Total surface area of heat exchanger tubes\n",
"Lt=Aw/(pi*di); #Total length of tubes\n",
"Nt=Lt/L; #Total number of tubes\n",
"Atubes=Nt*(pi/4*di**2); #Total cross-sectional area of tubes\n",
"Atotal=Abed+Atubes; #Total cross-sectional area of tube filled dryer\n",
"d=math.sqrt(Atotal*pi/4.);#Diameter of vessel\n",
"li=math.sqrt(Atotal/Nt); #Pitch for square array of tubes\n",
"\n",
"#OUTPUT\n",
"print '\\t\\t\\tBed diameter(m)\\tRecycle vapor flow(m**3/s)'\n",
"print 'Without internal heater\\t%f\\t%f'%(dt,x)\n",
"print 'With heating tubes\\t%f\\t%f'%(d,x1)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\t\t\tBed diameter(m)\tRecycle vapor flow(m**3/s)\n",
"Without internal heater\t3.630144\t5.331235\n",
"With heating tubes\t1.503916\t0.666404\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|