1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
{
"metadata": {
"name": "",
"signature": "sha256:a7839feeb371e4231dbf99a0d3738674ff633956f5fb373aea54d56b513c13f8"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 14 : The RTD and Size Distribution of Solids in Fluidized Beds"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1, Page 343"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from scipy.optimize import fsolve \n",
"import math \n",
"\n",
"#INPUT\n",
"Fo=2.7; #Feed rate in kg/min\n",
"Fof=0.9; #Feed rate of fines in feed in kg/min\n",
"Foc=1.8; #Feed rate of coarse in feed in kg/min\n",
"W=17.; #Bed weight in kg\n",
"kf=0.8; #Elutriation of fines in min**-1\n",
"kc=0.0125; #Elutriation of coarse in min**-1\n",
"\n",
"#CALCULATION\n",
"F1guess=1; #Guess value of F1\n",
"def solver_func(F1): #Function defined for solving the system\n",
" return F1-(Fof/(1.+(W/F1)*kf))-(Foc/(1.+(W/F1)*kc));#Eqn.(17)\n",
"\n",
"F1=fsolve(solver_func,F1guess)\n",
"F1f=Fof/(1.+(W/F1)*kf); #Flow rate of fines in entrained streams from Eqn.(16)\n",
"F1c=Foc/(1.+(W/F1)*kc); #Flow rate of coarse in entrained streams from Eqn.(16)\n",
"F2f=Fof-F1f; #Flow rate of fines in overflow streams from Eqn.(9)\n",
"F2c=Foc-F1c; #Flow rate of coarse in overflow streams from Eqn.(9)\n",
"tbarf=1./((F1/W)+kf); #Mean residence time of fines from Eqn.(12)\n",
"tbarc=1./((F1/W)+kc); #Mean residence time of coarse from Eqn.(12)\n",
"\n",
"#OUTPUT\n",
"print 'Flow rate in entrained stream:\\tFines:%fkg/min\\tCoarse:%fkg/min'%(F1f,F1c);\n",
"print 'Flow rate in overflow stream:\\tFines:%fkg/min\\tCoarse:%fkg/min'%(F2f,F2c);\n",
"print 'Mean residence time:\\tFines:%fmins\\tCoarse:%fmins'%(tbarf,tbarc);\n",
"\n",
"#====================================END OF PROGRAM ======================================================"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Flow rate in entrained stream:\tFines:0.100000kg/min\tCoarse:1.600000kg/min\n",
"Flow rate in overflow stream:\tFines:0.800000kg/min\tCoarse:0.200000kg/min\n",
"Mean residence time:\tFines:1.111111mins\tCoarse:8.888889mins\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2, Page 344\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"\n",
"import math\n",
"from numpy import linspace,array,zeros\n",
"from scipy.optimize import fsolve\n",
"from matplotlib.pyplot import *\n",
"%matplotlib inline\n",
"#Variable declaration\n",
"dt=4.; #Diameter of reactor in m\n",
"ephsilonm=0.4; #Void fraction of static bed\n",
"rhos=2500.; #Density of solid in the bed in kg/m**3\n",
"Lm=1.2; #Height of static bed in m\n",
"Fo=3000; #Feed rate in kg/hr\n",
"beta1=1.2; #Increase in density of solids\n",
"dp=array([3,4,5,6,7,8,9,10,11,12,3,14,16,18,20,22,24,26,28,30])*10**-2;#Size of particles in mm\n",
"po=[0,0.3,0.8,1.3,1.9,2.6,3.5,4.4,5.7,6.7,7.5,7.8,7.5,6.3,5.0,3.6,2.4,1.3,0.5,0];#Size distribution of solids in mm**-1\n",
"k=array([0,10,9.75,9.5,8.75,7.5,6.0,4.38,2.62,1.20,0.325,0,0,0,0,0,0,0,0,0])*10**-4;#Elutriation constant in s**-1\n",
"pi=3.14;\n",
"\n",
"#CALCULATION\n",
"W=(pi/4*dt**2)*Lm*(1-ephsilonm)*rhos;#Weight of solids in bed\n",
"n=len(dp);\n",
"i=0;\n",
"F1guess=1000.;#Guess value for F1\n",
"F1c=linspace(2510,2700,10);\n",
"F1 = zeros(n)\n",
"x = zeros(n)\n",
"c = zeros(n)\n",
"a = zeros(n)\n",
"while i<n:\n",
" if k[i]==0:\n",
" x[i]=0\n",
" #break \n",
" else:\n",
" x[i]=0#(float(po[i])/(W*k[i]/float(F1)))*math.log(1.+(W*k[i]/F1)); \n",
" def solver_func(Fo):\n",
" return F1/(Lm*Fo)-x[i];\n",
"\n",
" F1[i] = fsolve(solver_func,F1guess);#Using inbuilt function fsolve for solving Eqn.(20) for F1\n",
" #c[i]=F1c[i]/(Lm*Fo);\n",
" if F1[i]==0:\n",
" a[i]=0;\n",
" else:\n",
" a[i]=(po[i]/(W*k[i]/F1[i]))*math.log(1+(W*k[i]/F1[i]));\n",
"\n",
" i=i+1;\n",
"\n",
"#plot(F1,c);\n",
"\n",
"#xtitle('F1 vs a,c','F1','a,c');\n",
"F1n=2500.;#The point were both the curves meet\n",
"F2=beta1*Fo-F1n;#Flow rate of the second leaving stream\n",
"j=0;\n",
"m=len(dp);\n",
"p1 = zeros(m)\n",
"p2 = zeros(m)\n",
"tbar = zeros(m)\n",
"while j<m:\n",
" p1[j]=(1./F1n)*((Fo*po[j])/(1.+(W/F1n)*k[j]));#Size distribution of stream 1 in mm**-1 from Eqn.(16)\n",
" p2[j]=k[j]*W*p1[j]/F2;#Size distribution of stream 2 in mm**-1 from Eqn.(7)\n",
" if p1[j]==0 and p2[j]==0:\n",
" tbar[j]=0;\n",
" elif p1[j]==0:\n",
" tbar[j]=(W*p1[j])/(F2*p2[j]);\n",
" elif p2[j]==0:\n",
" tbar[j]=(W*p1[j])/(F1n*p1[j]);\n",
" else:\n",
" tbar[j]=(W*p1[j])/(F1n*p1[j]+F2*p2[j]);#Average time in hr from Eqn.(11)\n",
" j=j+1;\n",
"\n",
"#OUTPUT\n",
"print 'Flow rate of stream 1:%fkg/hr'%F1n\n",
"print 'Flow rate of stream 2:%fkg/hr'%F2\n",
"j=0;\n",
"print 'tbar(hr)'\n",
"while j<m:\n",
" print '%f'%tbar[j]\n",
" j=j+1;\n",
"\n",
"#DISCLAIMER: The value obtained for tbar is deviating highly\n",
"#form the one given in textbook. However, the value obtained by manual calculation is close to #\n",
"#the ones obtained from the program."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"Flow rate of stream 1:2500.000000kg/hr"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Flow rate of stream 2:1100.000000kg/hr\n",
"tbar(hr)\n",
"0.000000\n",
"8.962153\n",
"8.964162\n",
"8.966171\n",
"8.972205\n",
"8.982279\n",
"8.994397\n",
"9.007522\n",
"9.021824\n",
"9.033397\n",
"9.040543\n",
"9.043200\n",
"9.043200\n",
"9.043200\n",
"9.043200\n",
"9.043200\n",
"9.043200\n",
"9.043200\n",
"9.043200\n",
"0.000000\n"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"WARNING: pylab import has clobbered these variables: ['draw_if_interactive', 'pi']\n",
"`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3, Page 351\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"dp=1; #Particle size in mm\n",
"Fo=10; #Feed rate in kg/min\n",
"k=0.1; #Particle shrinkage rate in mm/min\n",
"\n",
"#CALCULATION\n",
"R=k/2; #Particle shrinkage rate in terms of radius\n",
"W=(Fo*dp/2)/(4*R); #Bed weight from Eqn.(42)\n",
"\n",
"#OUTPUT\n",
"print 'Weight of bed:%d kg' %W\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Weight of bed:25 kg\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4, Page 352\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"#Variable declaration\n",
"dpi=[1.05,0.95,0.85,0.75,0.65,0.55,0.45,0.35,0.25,0.15,0.05]; #Mean size in mm\n",
"Fo=[0,0.5,3.5,8.8,13.5,17.0,18.2,17.0,13.5,7.3,0]#*10**-2 #Feed rate in kg/s\n",
"for i in range(len(Fo)):\n",
" Fo[i] = Fo[i] * 10**-2\n",
"k=[0,0,0,0,0,0,0,0,2.0,12.5,62.5]#*10**-5;#Elutriation constant in s**-1\n",
"for i in range(len(k)):\n",
" k[i] = k[i] * 10**-5\n",
"\n",
"R=-1.58*10**-5;#Rate of particle shrinkage in mm/s\n",
"deldpi=0.1;#Size intervals in mm\n",
"\n",
"#CALCULATION\n",
"n=len(dpi);\n",
"m=1;#Starting with the largest value size interval that contains solids\n",
"W = [0]\n",
"while m<n-1:\n",
" W.append((Fo[m]-R*W[m-1]/deldpi)/(k[m]-R/deldpi-3*R/dpi[m]));#From Eqn.(33)\n",
" m=m+1;\n",
"\n",
"Wt=sum(W);#Total sum\n",
"\n",
"#OUTPUT\n",
"print '\\nTotal mass in the bed:%fkg'%Wt\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Total mass in the bed:7168.981263kg\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 5, Page 353\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"dpi=[0.17,0.15,0.13,0.11,0.09,0.07,0.05,0.03,0.01];#Mean size of particles in mm\n",
"a=[0,0.95,2.45,5.2,10.1,23.2,35.65,20.0,2.45]#*10**-2;#Feed composition Fo(dpi)/Fo\n",
"for i in range(len(a)):\n",
" a[i] = a[i] * 10**-2\n",
"\n",
"y=[0,0,0,0,0,0,0.625,10.225,159.25]#*10**-6;#Elutriation and cyclone efficiency k(dpi)(1-eta(dpi))\n",
"for i in range(len(y)):\n",
" y[i] = y[i] * 10**-6\n",
"\n",
"\n",
"F=0.01; #Rate at which solids are withdrawn in kg/s\n",
"W=40000; #Weight of bed in kg\n",
"dp1=0.11 #Initial size in mm\n",
"dp2=0.085; #Size after shrinking in mm\n",
"dpmin=0.01; #Minimum size in mm\n",
"deldpi=2*10**-2; #Size inerval in mm\n",
"t=20.8; #Time in days\n",
"si=1;\n",
"\n",
"#CALCULATION\n",
"kdash=math.log((dp1-dpmin)/(dp2-dpmin))/(t*24*3600);#Rate of particle shrinkage from Eqn.(24)\n",
"n=len(dpi);\n",
"m=1;\n",
"Fo=0.05;#Initial value of Fo\n",
"F1 = [0];\n",
"s=0;\n",
"c=0;\n",
"t=1E-6;\n",
"R = [0]\n",
"x = [0]\n",
"F1 = [0]\n",
"while m<n:\n",
" R.append(-kdash*(dpi[m]-dpmin));#Rate of size change\n",
" x.append((a[m]*Fo-W*R[m-1]*F1[m-1]/deldpi)/(F+(W*y[m])-(W*R[m]/deldpi)-3*W*R[m]/dpi[m]));#Eqn.(34)\n",
" F1.append(x[m]*F);\n",
" c=c+x[m];\n",
" m=m+1;\n",
" if abs(c-1)<t:\n",
" break\n",
" Fo=Fo+0.0001;#Incrementing Fo\n",
"\n",
"#OUTPUT\n",
"print 'Feed rate with deldpi=%fmm is %fg/hr'%(deldpi,Fo);\n",
"i=0;\n",
"print 'Bed composition'\n",
"for i in x:\n",
" print '%f'%(i*100)\n",
" i=i+1;\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Feed rate with deldpi=0.020000mm is 0.050800g/hr\n",
"Bed composition\n",
"0.000000\n",
"0.652911\n",
"1.859952\n",
"4.400781\n",
"9.668999\n",
"25.654298\n",
"28.575890\n",
"2.317749\n",
"0.019493\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|