summaryrefslogtreecommitdiff
path: root/Fluidization_Engineering_by_K_Daizo_And_O_Levenspiel/ch13.ipynb
blob: 18536015bddf7fef02af06d68d950d6a05d73c1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
{
 "metadata": {
  "name": "",
  "signature": "sha256:a97460b196d7b42e945dcfefc11684cc1c39c5847f8b0bdc9e3f6cdcd94bfcc3"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Chapter 13 : Heat Transfer between Fluidized Beds and Surfaces"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 1, Page 331\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "dp=57.0;         #Particle size in micrometer\n",
      "rhos=940.0;      #Density of solids in kg/m**3\n",
      "Cps=828.0;       #Specific heat capacity of the solid in J/kg K\n",
      "ks=0.20;         #Thermal conductivity of solids in W/m k\n",
      "kg=0.035;        #Thermal concuctivity of gas in W/m k\n",
      "umf=0.006;       #Velocity at minimum fluidization condition in m/s\n",
      "ephsilonmf=0.476;#Void fraction at minimum fluidization condition\n",
      "do1=0.0254;      #Outside diameter of tube in m\n",
      "L=1;\n",
      "uo=[0.05,0.1,0.2,0.35];#Superficial gas velocity in m/s\n",
      "nw=[2.,3.1,3.4,3.5];   #Bubble frequency in s**-1\n",
      "g=9.81;                #Acceleration due to gravity in square m/s**2\n",
      "\n",
      "\n",
      "#CALCULATION\n",
      "dte=4.*do1*L/2.*L;     #Hydraulic diameter from Eqn.(6.13)\n",
      "db=(1+1.5)*0.5*dte;    #Rise velocity of the bubble\n",
      "ubr=0.711*(g*db)**0.5; #Rise velocity of bubble from Eqn.(6.7)\n",
      "phib=0.19;#From Fig.(15) for ks/kg=5.7\n",
      "ke=ephsilonmf*kg+(1-ephsilonmf)*ks*(1/((phib*(ks/kg))+(2/3.0)))\n",
      "    #Effective thermal conductivity of bed from Eqn.(3) \n",
      "    \n",
      "n=len(uo);\n",
      "i=0;\n",
      "ub = [0,0,0,0]\n",
      "delta = [0,0,0,0]\n",
      "h = [0,0,0,0]\n",
      "while i<n:\n",
      "    ub[i]=uo[i]-umf+ubr; #Velocity of bubbles in bubbling beds in Eqn.(6.8)\n",
      "    delta[i]=uo[i]/ub[i];#Fraction of bed in bubbles from Eqn.(6.29)\n",
      "    h[i]=1.13*(ke*rhos*(1-ephsilonmf)*Cps*nw[i]*(1-delta[i]))**0.5;\n",
      "        #Heat transfer coefficinet from Eqn.(18)\n",
      "    i=i+1;\n",
      "\n",
      "#OUTPUT\n",
      "print 'Superficial gas velocity(m/s)',\n",
      "print '\\tHeat transfer coefficient(W/m**2 k)'\n",
      "i=0;\n",
      "while i<n:\n",
      "    print '%f'%uo[i],\n",
      "    print '\\t\\t\\t%f'%h[i]\n",
      "    i=i+1;\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Superficial gas velocity(m/s) \tHeat transfer coefficient(W/m**2 k)\n",
        "0.050000 \t\t\t270.297375\n",
        "0.100000 \t\t\t323.421769\n",
        "0.200000 \t\t\t315.487604\n",
        "0.350000 \t\t\t292.370761\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 2, Page 332\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "dp=80.;              #Particle size in micrometer\n",
      "rhos=2550.;          #Density of solids in kg/m**3\n",
      "Cps=756.;            #Specific heat capacity of the solid in J/kg K\n",
      "ks=1.21;             #Thermal conductivity of solids in W/m k\n",
      "kg=[0.005,0.02,0.2]; #Thermal concuctivity of gas in W/m k\n",
      "ephsilonmf=0.476;    #Void fraction at minimum fluidization condition\n",
      "\n",
      "#CALCULATION\n",
      "delta=0.5*(0.1+0.3);#For a gently fluidized bed\n",
      "nw=3.;#Bubble frequency in s**-1 from Fig.(5.12) at about 30cm above the distributor\n",
      "n=len(kg);\n",
      "i=0;\n",
      "x = [0,0,0]\n",
      "while i<n:\n",
      "    x[i]=ks/kg[i];#To find different values of ks/kg\n",
      "    i=i+1;\n",
      "\n",
      "phib=[0.08,0.10,0.20];#From Fig.(15) for different values of ks/kg\n",
      "i=0;\n",
      "ke = [0,0,0]\n",
      "h1 =[0,0,0]\n",
      "while i<n:\n",
      "    ke[i]=ephsilonmf*kg[i]+(1-ephsilonmf)*ks*(1/((phib[i]*(ks/kg[i]))+(2.0/3)))\n",
      "    #Effective thermal conductivity of bed from Eqn.(3)\n",
      "    \n",
      "    h1[i]=1.13*(ke[i]*rhos*(1-ephsilonmf)*Cps*nw*(1-delta))**0.5;#Heat transfer coefficinet from Eqn.(18)\n",
      "    i=i+1;\n",
      "\n",
      "#OUTPUT\n",
      "print 'Thermal conductivity of Gas(W/m K))',\n",
      "print '\\tMax. heat transfer coefficient(W/m**2 k)'\n",
      "i=0;\n",
      "while i<n:\n",
      "    print '%f'%kg[i],\n",
      "    print '\\t\\t\\t\\t%d'%h1[i]\n",
      "    i=i+1;\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Thermal conductivity of Gas(W/m K)) \tMax. heat transfer coefficient(W/m**2 k)\n",
        "0.005000 \t\t\t\t324\n",
        "0.020000 \t\t\t\t567\n",
        "0.200000 \t\t\t\t1157\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3, Page 332\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "rhos=2700.;        #Density of solids in kg/m**3\n",
      "Cps=755.;          #Specific heat capacity of the solid in J/kg K\n",
      "ks=1.2;            #Thermal conductivity of solids in W/m k\n",
      "kg=0.028;          #Thermal concuctivity of gas in W/m k\n",
      "ephsilonmf=0.476;  #Void fraction at minimum fluidization condition\n",
      "dp1=10E-3;         #Particle size for which h=hmax in m\n",
      "hmax=250.;         #Max. heat transfer coefficient in W/m**2 K \n",
      "nw=5.;             #Bubble frequency in s**-1\n",
      "delta=0.1;         #Fraction of bed in bubbles\n",
      "deltaw=0.1;        #Fraction of bed in bubbles in wall region\n",
      "dp=2E-3;           #Diameter of particle in m\n",
      "\n",
      "#CALCULATION\n",
      "x=ks/kg;\n",
      "phib=0.11;\n",
      "phiw=0.17;\n",
      "ke=ephsilonmf*kg+(1-ephsilonmf)*ks*(1/((phib*(ks/kg))+(2.0/3)));\n",
      "#Effective thermal conductivity of bed from Eqn.(3)\n",
      "\n",
      "hpacket=1.13*(ke*rhos*(1-ephsilonmf)*Cps*nw/(1-deltaw))**0.5;\n",
      "#Heat transfer coefficient for the packet of emulsion from Eqn.(11)\n",
      "\n",
      "ephsilonw=ephsilonmf;#Void fraction in the wall region\n",
      "\n",
      "kew=ephsilonw*kg+(1-ephsilonw)*ks*((phiw*(ks/kg)+(1.0/3))**-1);\n",
      "#Effective thermal conductivity in the wall region with stagnant gas from Eqn.(4)\n",
      "\n",
      "y=(2*kew/dp1)+(hmax*hpacket)/(((1-deltaw)*hpacket)-hmax);\n",
      "#Calculating the term alphaw*Cpg*rhog*uo from Eqn.(16) by rearranging it\n",
      "\n",
      "h=(1-deltaw)/((2*kew/dp+y*(dp/dp1)**0.5)**-1+hpacket**-1);\n",
      "#Heat transfer coeeficient from Eqn.(11) by using the value of y \n",
      "\n",
      "#OUTPUT\n",
      "print 'The heat transfer coefficient for paricle size of %fm = %fW/m**2 K'%(dp,h);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The heat transfer coefficient for paricle size of 0.002000m = 194.873869W/m**2 K\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4, Page 334\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "Hf=4.0;   #Height of freeboard in m\n",
      "uo=2.4;   #Superficial gas velocity in m/s\n",
      "ho=350.0; #Heat transfer coefficient at the bottom of freeboard region in W/m**2 K\n",
      "hg=20.0;  #Heat transfer coefficient in equivalent gas stream, but free of solids in W/m**2 K\n",
      "\n",
      "#CALCULATION\n",
      "zf=[0,0.5,1,1.5,2,2.5,3,3.5,Hf];#Height above the top of the dense bubbling fluidized bed\n",
      "hr=0;#Assuming heat transfer due to radiation is negligible\n",
      "a=1.5/uo;#Since decay coefficient from Fig.(7.12), a*uo=1.5s**-1 \n",
      "n=len(zf);\n",
      "i=0;\n",
      "h = []\n",
      "while i<n:\n",
      "    h.append((hr+hg)+(ho-hr-hg)*math.exp(-a*zf[i]/2.0));#Heat transfer coefficient from Eqn.(24) for zf=Hf\n",
      "    i=i+1;\n",
      "\n",
      "hbar=(hr+hg)+2*(ho-hr-hg)*(1-math.exp(-a*Hf/2.0))/(a*Hf);#Mean heat transfer coefficient for the 4-m high freeboard from Eqn.(26)\n",
      "\n",
      "#OUTPUT\n",
      "print 'The required relationship is h(W/m**2 K) vs. zf(m) as in Fig.(9a)'\n",
      "print 'Height above the dense bubbling fluidized bed(m))',\n",
      "print '\\tHeat transfer coefficient(W/m**2 k)'\n",
      "i=0;\n",
      "while i<n:\n",
      "    print '%f'%zf[i],\n",
      "    print '\\t\\t\\t\\t\\t\\t%f'%h[i]\n",
      "    i=i+1;\n",
      "\n",
      "print '\\nThe mean heat transfer coefficient for the 4-m high freeboard =%d W/m**2 K'%hbar\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required relationship is h(W/m**2 K) vs. zf(m) as in Fig.(9a)\n",
        "Height above the dense bubbling fluidized bed(m)) \tHeat transfer coefficient(W/m**2 k)\n",
        "0.000000 \t\t\t\t\t\t350.000000\n",
        "0.500000 \t\t\t\t\t\t302.263958\n",
        "1.000000 \t\t\t\t\t\t261.433158\n",
        "1.500000 \t\t\t\t\t\t226.508723\n",
        "2.000000 \t\t\t\t\t\t196.636271\n",
        "2.500000 \t\t\t\t\t\t171.085009\n",
        "3.000000 \t\t\t\t\t\t149.229857\n",
        "3.500000 \t\t\t\t\t\t130.536154\n",
        "4.000000 \t\t\t\t\t\t114.546583\n",
        "\n",
        "The mean heat transfer coefficient for the 4-m high freeboard =208 W/m**2 K\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}