1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
{
"metadata": {
"name": "",
"signature": "sha256:89c91579d721ed0f833b399593203d4eb19421ab1695bc830f1be612e46bd826"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 10 : Gas Dispersion and Gas Interchange in Bubbling Beds"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
"For more information, type 'help(pylab)'.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1, Page 253\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"from numpy import *\n",
"%matplotlib inline\n",
"#Variable declaration\n",
"umf=[0.01,0.045]; #Velocity at minimum fluidization condition in m/s\n",
"ephsilonmf=[0.5,0.5]; #Void fraction at minimum fluidization condition\n",
"D=[2E-5,7E-5]; #Diffusion coefficient of gas in m**2/s\n",
"g=9.81; #Acceleration due to gravity in m/s**2\n",
"\n",
"#CALCULATION\n",
"db=[5.,10.,15.,20.];\n",
"n=len(umf);\n",
"m=len(db)\n",
"Kbc = zeros((n,m))\n",
"Kce = zeros((n,m))\n",
"Kbe = zeros((n,m))\n",
" \n",
"for i in range(n):\n",
" for j in range(m):\n",
" Kbc[i][j]=4.5*(umf[i]/db[j])+5.85*((D[i]**0.5*g**0.25)/db[j]**(5.0/4));#Gas interchange coefficient between bubble and cloud from Eqn.(27)\n",
" Kce[i][j]=6.77*((D[i]*ephsilonmf[i]*0.711*(g*db[j])**0.5)/db[j]**3)**0.5;#Gas interchange coefficient between emulsion and cloud from Eqn.(34)\n",
" Kbe[i][j]=(Kbc[i][j]*Kce[i][j])/(Kbc[i][j]+Kce[i][j]);#Gas interchange coefficient between bubble and emulsion from Eqn.(14)\n",
"\n",
"#OUTPUT\n",
"i=0;\n",
"j=0;\n",
"k=0;\n",
"while k<m*n:\n",
" print '\\t\\tKbc for fine particles and He',\n",
" print '\\tKbc for coarse particles and ozone',\n",
" print '\\tKbe for fine particles and He',\n",
" print '\\tKbe for coarse particles and ozone'\n",
" j = 0\n",
" while j<m:\n",
" print 'db=%fm'%(db[j]*10**-2);\n",
" while i<n:\n",
" print '\\t%f'%Kbc[i][j],\n",
" print '\\t\\t\\t%f'%Kbe[i][j],\n",
" i=i+1; \n",
" k=k+1;\n",
" print '\\t\\t\\t',\n",
" i=0;\n",
" j=j+1;\n",
"import numpy\n",
"import matplotlib.pyplot as plt\n",
"a = numpy.matrix(Kbe)\n",
"b = numpy.matrix(Kbc)\n",
"db = array(db).T\n",
"Kbe=a.T\n",
"Kbc=b.T\n",
"\n",
"plt.plot(db,Kbc,db,Kbe)\n",
"#plt.plot(db,Kbe);\n",
"#Note : Python does not have plot2d function. so we can plot it \n",
"#plt.title('Plot of Kbc,Kbe vs db','db');\n",
"plt.show()\n",
"print 'Comparing the points with the plot of Kbc,Kbe vs db in Fig.(12), we can conlcude the following:'\n",
"print 'Kbc for fine particles and helium: line 2 in Fig.(12)'\n",
"print 'Kbc for coarser particles and ozone: line 3 in Fig.(12)'\n",
"print 'Kbe for fine particles and helium: line 4 in Fig.(12)'\n",
"print 'Kbe for coarser particles and ozone: line 5 in Fig.(12)'\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
"For more information, type 'help(pylab)'.\n"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\t\tKbc for fine particles and He \tKbc for coarse particles and ozone \tKbe for fine particles and He \tKbe for coarse particles and ozone\n",
"db=0.050000m\n",
"\t0.015193 \t\t\t0.003335 \t\t\t\t0.052085 \t\t\t0.006930 \t\t\tdb=0.100000m\n",
"\t0.007104 \t\t\t0.001434 \t\t\t\t0.025121 \t\t\t0.002964 \t\t\tdb=0.150000m\n",
"\t0.004568 \t\t\t0.000875 \t\t\t\t0.016434 \t\t\t0.001803 \t\t\tdb=0.200000m\n",
"\t0.003345 \t\t\t0.000616 \t\t\t\t0.012173 \t\t\t0.001266 \t\t\t"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD9CAYAAABdoNd6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYk/fBPvA7AZSgFo0g2qpUDgKpVSlI7FSMioAi4qpO\naVdstRt2q1it21Xb/lbbXa9bZ7fqWN+O9p2tCrzalU0oihR0iHYVcHX6ioCKMktbD0QLcjQhz++P\npwQi4RAIPIHcn+vK1RyexBsr9/fJ9znJBEEQQEREg5pc6gBERNT3WPZERHaAZU9EZAdY9kREdoBl\nT0RkB1j2RER2oMuyz8/PR0BAAHx9fZGYmGh2ma1bt8LLywtBQUEoLS01Pl9XV4c1a9Zg8uTJUKlU\nOHXqlPWSExFRt3VZ9hs3bkRSUhJyc3Px7rvvoqqqyuT1wsJCnDhxAqdPn8aWLVuwZcsW42uvv/46\nJk6ciHPnzuHcuXMICAiw/k9ARERd6rTsq6urAQChoaHw9PREeHg4CgoKTJYpKCjAihUroFQqERsb\ni5KSEuNrubm5eOWVV+Ds7AxHR0e4urr2wY9ARERd6bTsi4qK4O/vb3xsbiqmsLAQKpXK+Njd3R1X\nrlxBZWUlGhsb8fzzz0OtVuOtt95CY2OjleMTEVF3OPb2AwRBgLkzLjQ2NuLixYvYsWMHwsLCEB8f\nj48//hhxcXEmy8lkst5GICKyS5ac7abTNfsZM2aYbHAtLi7GzJkzTZZRq9W4cOGC8fGtW7fg5eUF\nHx8f+Pn5ITo6GgqFArGxscjKyuowsK3fXn/9dckzMCdzDuScAyHjQMppqU7LvmWOPT8/HxUVFcjJ\nyYFarW5X9mlpadBqtUhNTTXZCOvr64uCggIYDAYcOnQIYWFhFgckIqLe63IaZ+fOnYiPj4dOp0NC\nQgLc3NyQlJQEAIiPj0dISAhmz56N4OBgKJVKJCcnG9/79ttvIy4uDo2NjQgLC8Pq1av77ichIqIO\nyYSefB+wZgCZrEdfSfpbXl4eNBqN1DG6xJzWxZzWMxAyAgMnp6XdybInIhqALO1Oni6BiMgOsOyJ\niOwAy56IyA6w7ImI7ADLnojIDrDsiYjsAMueiMgOsOyJiOwAy56IyA6w7ImI7ADLnojIDrDsiYjs\nAMueiMgOsOyJiOwAy56IyA6w7ImI7ADLnojIDrDsiYjsAMueiMgOsOyJiOwAy56IyA6w7ImI7MCg\nK/ubdTeRfC5Z6hhERDZl0JV93b06/Oofv8Lb/3xb6ihERDZDJgiCIGkAmQzWjlBZU4kFexfgqUef\nwv8L/X+QyWRW/XwiIqlZ2p2DsuwB4EbtDYTtC8Ni38X47YLfsvCJaFBh2behrdciIjkCj094HLsi\nd0EuG3SzVkRkpyztzi7bLz8/HwEBAfD19UViYqLZZbZu3QovLy8EBQWhtLTU+PzDDz+MqVOnIjAw\nECEhId0OZS2jXUbjaNxRfPntl/jJpz9Bs6G53zMQEdmCLtfsAwMDsWvXLnh6eiIiIgInT56Em5ub\n8fXCwkJs3rwZGRkZyM7ORkpKCjIzMwEAkyZNwr/+9S8olcqOA/Thmn2L2nu1iNkfA49hHtizbA+c\nHJz69M8jIuprVl2zr66uBgCEhobC09MT4eHhKCgoMFmmoKAAK1asgFKpRGxsLEpKSkxel3iWCAAw\nfMhwZMZmorqpGj/65Edo0jdJHYmIqF91WvZFRUXw9/c3PlapVDh16pTJMoWFhVCpVMbH7u7uuHLl\nCgBx5Jk/fz6WLVuGjIwMa+a2mMJJgb+v+jvkMjmWHViGel29pHmIiPqTY28/QBCEDtfeP//8c4wb\nNw4lJSWIjo5GSEgIxo4d2265bdu2Ge9rNBpoNJrexjJriMMQHFhxAM8cfAZRqVHIWJ2BEUNH9Mmf\nRURkTXl5ecjLy+vx+zuds6+uroZGo8GZM2cAABs2bEBkZCSioqKMyyQmJkKv12PTpk0AAG9vb5SX\nl7f7rM2bNyMgIAA/+clPTAP0w5z9/ZoNzVh/aD3O3zyPrKeyMNJ5ZL/++UREvWXVOXtXV1cA4h45\nFRUVyMnJgVqtNllGrVYjLS0NWq0WqampCAgIAADU19fj7t27AIBbt24hOzsbkZGRFv0wfcVB7oD3\nl7yPkIdCMH/PfFTVV0kdiYioT3U5jbNz507Ex8dDp9MhISEBbm5uSEpKAgDEx8cjJCQEs2fPRnBw\nMJRKJZKTxfPSXL9+HU888QQAYPTo0XjppZcwYcKEPvxRLCOTybAzYidePfYqNB9pkPN0DsaNGCd1\nLCKiPjGoD6rqrv/K/y/sObsHR+OOYoKr7QxIREQdsbQ7e72BdjB4NfRVuDi5IPSjUOQ+nQtvpbfU\nkYiIrIpl/71Nj2+CwkkBzR5xSsffzb/rNxERDRAs+zbWB6+Hi5ML5u+Zj6ynsjBt7DSpIxERWQXL\n/j5x0+KgcFQgPDkcn8Z+ipCH+v+cPkRE1sayN2PlIyvh7OiMJalLkPajNMzxnCN1JCKiXuE5fzsQ\n7ReNlCdS8MTHTyD3Sq7UcYiIeoVl34mF3gvxtx/9DU+mPYnMi5lSxyEi6jGWfRfmeM5B5pOZWJex\nDn8t/qvUcYiIeoRz9t0Q8lAIPvvxZ4hMiUSDvgFx0+KkjkREZBGWfTdNGzsNx+KOITw5HA26BsQH\nx0sdiYio21j2FghwD0DemjyE7QtDva4emx7fJHUkIqJu4blxeuBa9TWE7Q1D3LQ4vDrnVchkMqkj\nEZGdsbQ7WfY99O3dbxG2LwxL/ZZi+/ztLHwi6lcs+35UVV+F8H3hmOM5B+9EvAO5jDs3EVH/YNn3\ns+8av8OilEWYMmYK/hz1ZzjIHaSORER2gGUvgbtNd7F0/1I8OOJB7Fm2B45ybvcmor5l1csSUveM\nGDoCh548BG29Fqs+WYV7zfekjkREZIJlbyUuTi5IX50Og2DAsv3L0KBrkDoSEZERy96KhjoOxccr\nPoarsyuiUqNQe69W6khERABY9lbn5OCE5B8mY9KoSYhIjkB1Y7XUkYiIWPZ9wUHugA+iP8Bj4x7D\ngr0LoK3XSh2JiOwcy76PyGVy/DHyj1jgtQCaPRpcr70udSQismMs+z4kk8nw2wW/xUrVSsz9aC4q\nayqljkREdopl38dkMhl+NfdX+OljP0Xoh6G4cueK1JGIyA7x6J9+8tIPXoLCSYG5H81FztM58Hfz\nlzoSEdkRln0/+tmMn8HFyQXz98zHkR8fwVSPqVJHIiI7wbLvZ89MfwYKRwXC94Uj88lMBD8YLHUk\nIrIDLHsJrJqyCgonBRanLMbfV/0dsybOkjoSEQ1yXW6gzc/PR0BAAHx9fZGYmGh2ma1bt8LLywtB\nQUEoLS01ea25uRmBgYGIjo62TuJBYqnfUiQ/kYxlB5bh6JWjUschokGuy7LfuHEjkpKSkJubi3ff\nfRdVVVUmrxcWFuLEiRM4ffo0tmzZgi1btpi8vmvXLqhUKl7cw4xw73Ck/SgNsWmxOHTxkNRxiGgQ\n67Tsq6vFQ/1DQ0Ph6emJ8PBwFBQUmCxTUFCAFStWQKlUIjY2FiUlJcbXKisrcfjwYTz33HMD/jTG\nfSXUMxSfxn6KtRlrkXYhTeo4RDRIdVr2RUVF8Pdv3UVQpVLh1KlTJssUFhZCpVIZH7u7u+PKFXFf\n8k2bNmHHjh2Qy7k7f2fU49XI/nE2Xsh6AcnnkqWOQ0SDUK830AqCYHatPTMzE2PGjEFgYCDy8vI6\n/Yxt27YZ72s0Gmg0mt7GGnCmj52Oo3FHEb4vHPW6evw06KdSRyIiG5KXl9dll3am0ytVVVdXQ6PR\n4MyZMwCADRs2IDIyElFRUcZlEhMTodfrsWnTJgCAt7c3ysvL8corr2Dfvn1wdHREY2MjampqsHz5\ncuzdu9c0wCC4UpU1Xb59GWF7w7Bp5iZsnLlR6jhEZKOseqUqV1dXAOIeORUVFcjJyYFarTZZRq1W\nIy0tDVqtFqmpqQgICAAAbN++HV999RWuXr2K/fv3Y/78+e2KntrzUfrg+DPH8aeiP2H7ie1SxyGi\nQaLLaZydO3ciPj4eOp0OCQkJcHNzQ1JSEgAgPj4eISEhmD17NoKDg6FUKpGcbH7OmXvjdJ/nSE8c\nf+Y4wvaGoV5Xj1/P+zX//oioV3jBcRt2q+4WwpPDoXlYgz+E/4GFT0RGlnYny97G3Wm4g0UpizB9\n7HT8d9R/Qy7jnk1ExLIflO423cWS/10CT1dP7I7ZDUc5z3JBZO+suoGWbMOIoSOQ9VQWbtTdQGxa\nLO4135M6EhENMCz7AcLFyQUZqzNwr/kenjjwBBr1jVJHIqIBhGU/gAx1HIpPVn6C4UOGI/p/o1F3\nr07qSEQ0QLDsBxgnByekPJGC8Q+MR2RKJGqaaqSOREQDAMt+AHKQO+AvS/+CqR5TsWDvAtxuuC11\nJCKycSz7AUouk+NPi/4EzcMazNszDzfrbkodiYhsGMt+AJPJZPhd2O/wQ/8fIvTDUHxd87XUkYjI\nRrHsBziZTIZtmm1YG7gWoR+FouK7CqkjEZEN4tE5g8QvZ/0SLk4uCP0wFLlxuZg8erLUkYjIhrDs\nB5EXQl6Ai5ML5u2Zh+wfZ2PKmClSRyIiG8GyH2TWBq6FwlGBsL1hOPTkIQQ9GCR1JCKyASz7QSj2\n0Vg4OzpjUcoiHFx9ED+Y8AOpIxGRxLiBdpD6YcAPsfeHexGzPwbHrh6TOg4RSYxlP4hF+kTiryv/\nilWfrELWpSyp4xCRhFj2g5zmYQ0yVmdgzcE1+FvJ36SOQ0QS4Zy9HXh8wuM48uMjWJyyGI36Rjz5\n6JNSRyKifsaytxOPjXsMuXG5iEiOQL2uHs899pzUkYioH7Hs7ciUMVPwjzX/MF7IPEGdIHUkIuon\nLHs7M3n0ZOQ/m48FexegXlePl2e/LHUkIuoHvAatnfq65muE7QvDStVKvKF5AzKZTOpIRGQBXnCc\nuu1m3U0s3LcQYV5heHvh2yx8ogGEZU8Wud1wG5HJkQh6MAjvLn4Xchn3xiUaCFj2ZLGaphpEpUbB\ne5Q3/mfp/8BRzk05RLaOZU89UnevDssOLINSoUTyD5Ph5OAkdSQi6oSl3cnv7AQAGDZkGD6N/RT1\nunos/3g5GvWNUkciIiti2ZORs6Mz0n6UBmdHZyz936Wo19VLHYmIrKTLss/Pz0dAQAB8fX2RmJho\ndpmtW7fCy8sLQUFBKC0tBQA0NjZCrVZj+vTpmDlzJt555x3rJqc+McRhCFKXp2Ls8LGITI5ETVON\n1JGIyAq6nLMPDAzErl274OnpiYiICJw8eRJubm7G1wsLC7F582ZkZGQgOzsbKSkpyMzMBADU19fD\nxcUFTU1NCAoKwsGDB+Hj42MagHP2NskgGPCzQz/DmetnkPVUFpQKpdSRiKgNq87ZV1dXAwBCQ0Ph\n6emJ8PBwFBQUmCxTUFCAFStWQKlUIjY2FiUlJcbXXFxcAAC1tbXQ6/UYOnRot4ORtOQyOd6Leg+z\nJszC/D3zcbPuptSRiKgXOi37oqIi+Pv7Gx+rVCqcOnXKZJnCwkKoVCrjY3d3d5SXlwMAmpubMW3a\nNHh4eOCFF17AhAkTrJmd+phMJsPvw3+PaL9ozP1oLr65+43UkYioh3q9Q7UgCO2+SrQcieng4ICz\nZ8+ioqICixcvxqxZsxAYGNjuM7Zt22a8r9FooNFoehuLrEQmk+HX834NF0cXhH4YiqNxR+E50lPq\nWER2Jy8vD3l5eT1+f6dz9tXV1dBoNDhz5gwAYMOGDYiMjERUVJRxmcTEROj1emzatAkA4O3tbVyz\nb2vLli3w8fHB+vXrTQNwzn7A2HVqF/5w6g/IfToXvqN9pY5DZNesOmfv6uoKQNwjp6KiAjk5OVCr\n1SbLqNVqpKWlQavVIjU1FQEBAQCAqqoqfPfddwAArVaLzz77DDExMRb9MGRbNs7ciNfmvAbNHg2K\nbxZLHYeILNDlNM7OnTsRHx8PnU6HhIQEuLm5ISkpCQAQHx+PkJAQzJ49G8HBwVAqlUhOTgYAfPvt\nt1izZg2am5sxduxYbNmyBePGjevbn4b63E+CfgKFkwIL9i5A1lNZCBzXflqOiGwPT5dAPZJ2IQ0/\nO/wzpK9Ox8zxM6WOQ2R3eG4c6jeHLx3GmoNr8MnKTzD34blSxyGyKzw3DvWbxb6LsX/5fqz46wpk\nX86WOg4RdYJlT72ywGsBDq46iKf//jTSS9OljkNEHeCJy6nXZk2chcNPHcaS1CVo0Ddg9ZTVUkci\novuw7Mkqgh8MRs7TOYhMiUSDrgHPBj4rdSQiaoNlT1bzqMejOBZ3DAv3LUS9rh4/D/m51JGI6Hss\ne7IqPzc/HH/mOBbsXYB6XT1+MesXUkciInDXS+ojlTWVCNsbhtgpsfjV3F8Zz5dERNbB/ezJZtyo\nvYGF+xYi0icSb4W9xcInsiKWPdkUbb0WkSmRUD+kxh8X/RFyGff2JbIGlj3ZnOrGakSlRmHy6Mn4\nIPoDOMgdpI5ENOCx7Mkm1d2rw9L9SzFm2BjsXbYXTg5OUkciGtB4ugSyScOGDENmbCZqmmqw8q8r\nUa+rlzoSkV1h2VO/UTgp8PdVf8cDQx/AuN+Pw/KPl2Pv2b3Q1muljkY06HEahyRxq+4WDl06hPSy\ndBy9chSPjXsMMX4xiPGPgdcoL6njEdk8ztnTgNOga0DulVwcLDuIT8s+hcdwD7H4/WIQ/GAwd9kk\nMoNlTwNas6EZpypPIb0sHell6eKGXb+liPGLgeZhDYY6DpU6IpFNYNnToFJaVYr0UrH4L9y6gAif\nCMT4xWCx72KMdB4pdTwiybDsadC6UXsDn178FOll6ThecRwhD4UY5/knuk6UOh5Rv2LZk12ou1eH\nz8o/w8Gygzh08RAmuE4wzvNPHzud8/w06LHsye7oDXp8fu1z4zy/3qA3Fn+oZygP4KJBiWVPdk0Q\nBBTfKjbO81++fRmLfBchxi8GkT6ReGDoA1JHJLIKlj1RG1/XfG2c5//82uf4wYQfIMYvBkv9luKh\nBx6SOh5Rj7HsiTpQ01SD7MvZSC9Lx+FLh+Gt9DZO90wZM4Xz/DSgsOyJukHXrMOJayfEef7SdDjI\nHYzFP2viLDjKeRE3sm0seyILCYKAszfOGuf5r1VfQ9TkKMT4xSDcOxzDhwyXOiJROyx7ol66Vn0N\nGWUZSC9LR0FlAUI9QxHjF4Nov2iMHT5W6nhEAFj2RFb1XeN3yLqUhfSydGSXZ8Pfzd843ePv5s95\nfpKM1c9nn5+fj4CAAPj6+iIxMdHsMlu3boWXlxeCgoJQWloKAPjqq68wb948PPLII9BoNEhNTe12\nKCJbMdJ5JGIfjcX+FftxY8sNvKF5A1/VfIWF+xbC709++EXOL3Dy2kk0G5qljkrUqS7X7AMDA7Fr\n1y54enoiIiICJ0+ehJubm/H1wsJCbN68GRkZGcjOzkZKSgoyMzNx/fp1XL9+HdOnT0dVVRVCQkJw\n9uxZjBgxwjQA1+xpABIEAV9++yXSy9JxsPQgrtdeR7RfNGL8YhDmFQYXJxepI9IgZ9VpnOrqamg0\nGpw5cwYAkJCQgIiICERFRRmXSUxMRHNzM1588UUAgLe3N8rLy9t9VnR0NDZv3ox58+b1KjCRLbp6\n56rxCN5/ffMvzJ80HzF+MVgyeQnch7lLHY8GIatO4xQVFcHf39/4WKVS4dSpUybLFBYWQqVSGR+7\nu7u3K/vLly+juLgYISEh3Q5GNJBMGjUJL858Ef9Y8w9UvFiB5QHLcejSIfgk+mDOh3Pw9j/fxiXt\nJaljkh3r9c7EgiC0G13abrS6e/cuVq1ahXfeeQfDhg0z+xnbtm0z3tdoNNBoNL2NRSQZpUKJp6c9\njaenPY1GfSOOXT2G9LJ0hH4UilHOoxDjL27gDXkoBHIZrwxK3ZOXl4e8vLwev9+iaZwNGzYgMjKy\n3TSOXq/Hpk2bAJhO4+h0OkRFRWHx4sXGaZ52ATiNQ3bCIBhQ9HWRcbrndsNtRE+OxjL/ZZg/aT6c\nHZ2ljkgDiFWncVxdXQGIe+RUVFQgJycHarXaZBm1Wo20tDRotVqkpqYiICAAgLjGv27dOkyZMqXD\noieyJ3KZHOrxamxfsB3FPytG/jP58Bvth9+c/A083vbAio9XYN/ZfbjdcFvqqDQIdbk3zvHjx7F+\n/XrodDokJCQgISEBSUlJAID4+HgAwMsvv4wDBw5AqVQiOTkZAQEBOHnyJEJDQzF16lTjtM5vfvMb\nREZGmgbgmj0RbtXdQubFTKSXpePY1WMIejDIuD//pFGTpI5HNogHVRENcPW6euReyUV6WTo+LfsU\nY4ePNc7zB40L4oFcBIBlTzSodHQB9mX+y6B5WIMhDkOkjkgSYdkTDWJtL8BeUlWCCG/xAuyLfBfx\nAux2hmVPZCeu1143zvMfrzgO9Xi18cIsvAD74MeyJ7JDtfdq8Vn5Z0gvS8ehi4cw0XWiuIHXPwbT\nPKZxnn8QYtkT2bn7L8DebGg2buCdM3EOL8A+SLDsicjo/guwl98pxyKf1guwjxg6ousPIZvEsiei\nDt1/AfZZE2cZ5/kfHPGg1PHIAix7IuqWmqYaHLl8BOll6ci6lAUfpY9xnv8R90c4z2/jWPZEZDFd\nsw75/8k3zvPLZXJM9ZiKyaMnw2+0n3hz84O7izsHARvBsieiXhEEAaVVpbhw6wIuai+iTFsm3qrK\nIEBoNwBMHj0ZvkpfKJwUUke3Kyx7IuoTgiCgqr6q3QBQpi3D1TtXMXb4WPi5iYOAcUBw88P4B8bz\nVM59gGVPRP1Ob9Cj4rsKY/kbB4SqMlQ3VcNX6SsOAN8PBi0Dgquzq9TRByy7L/vaWuA//wFUKoBT\ni0TSq2mqwUXtRZMBoGVAGDFkRLsBwM/ND5NGTuLxAF2w+7L/8kvgiScAQQAWLQIWLwbmzweGD7fa\nH0FEViAIAr6++7Wx/I3fCKrK8M3db/DwyIeN2wS4kbg9uy97QCz60lLg8GHxVlgIzJwpFv+iRYCf\nH9f6iWxZo74Rl29fRllVGTcSd4Blb8bdu8DRo2LxZ2UBTk6txT9vHuDi0qd/PBFZiSAI0DZoTb4N\ntAwIV+5csauNxCz7LggCcP68WPqHDwP/+hcwe3brlI+PT79FISIrsreNxCx7C1VXA7m5rWv9w4e3\nFv/cuYAzrwFNNOANxo3ELPteEATg7NnW4j97FggNbZ3ymcRLgRINKgN5IzHL3oru3AE++0ws/qws\nQKlsXeufMwcYOlTqhETUVyzdSOw32g8+Sp9+20jMsu8jBgNw5kzrHj4XLgAaTeta/0ReGIjILtjK\nRmKWfT+pqhLX+g8fBrKzAQ+P1uKfNQsYwutAE9mdthuJ7/82YO2NxCx7CTQ3A6dPt871X7wILFgg\nFv+iRcBDD0mdkIikVtNUg0vaS+3OK9TTjcQsextw86a4tn/4sLj2P2FC61z/448Djo5SJyQiW3H/\nRuK2ewx1tpHYY7gHy96W6PXiEbwtc/0VFUBYmFj8kZHA2LFSJyQiW9WykbhlD6G23wruvHyHZW/L\nvv0WOHJELP7cXMDLq3WuX60GHBykTkhEtk4QBMjlcpb9QKHTAV980Xo0b2UlEB4uln9EBDBmjNQJ\nichWcc5+AKusbF3rP3pUPGHb4sXiLTgYkA+uU3sQUS+w7AeJe/eAzz9vneu/eVOc41+0SFzrHz1a\n6oREJCVLu7PLdcX8/HwEBATA19cXiYmJZpfZunUrvLy8EBQUhNLSUuPza9euhYeHBx599NFuByLR\nkCHiGTl37ACKi8VdO2fNAg4cEE/b8IMfAL/+tXgiN4NB6rREZOu6XLMPDAzErl274OnpiYiICJw8\neRJubm7G1wsLC7F582ZkZGQgOzsbKSkpyMzMBACcOHECw4cPR1xcHP7v//7PfACu2VusqQnIz2+d\n6//uO3Gtf/FiYOFCYNQoqRMSUV+z6pp9dXU1ACA0NBSenp4IDw9HQUGByTIFBQVYsWIFlEolYmNj\nUVJSYnxtzpw5GMXmsbqhQ8VS/8MfxIu0/POfwIwZwJ494mkb5swBfvMb4N//Fk/uRkTUadkXFRXB\n39/f+FilUuHUqVMmyxQWFkKlUhkfu7u7o7y83MoxqTNeXsDPfw4cOiTO7b/6qriL54oVwPjxwLp1\nQFqaeDpnIrJPvT6WUxCEdl8lLD3157Zt24z3NRoNNBpNb2PZLYVCnNKJjAT++Efg0iVxqueDD4Bn\nngGCglr38HnkEV6ekWigyMvLQ15eXo/f3+mcfXV1NTQaDc6cOQMA2LBhAyIjIxEVFWVcJjExEXq9\nHps2bQIAeHt7m6zZV1RUIDo6mnP2NqCuDsjLa93DR69vLf4FC3hRdqKBxKpz9q6u4pnY8vPzUVFR\ngZycHKjVapNl1Go10tLSoNVqkZqaioCAgB7Epv4wbBgQFQW8+y5w5QqQkyPuy5+YCIwbJ57G4fe/\nB0pKONdPNNh0uTfO8ePHsX79euh0OiQkJCAhIQFJSUkAgPj4eADAyy+/jAMHDkCpVCI5OdlY+LGx\nsTh+/Di0Wi3GjBmDN998E88++6xpAK7Z24S7d4Fjx1r38HFwaD1527x54kBBRLaDB1VRrwmCuG9/\nS/GfPi3u199yDh9fX871E0mNZU9WV1PTelH2w4cBF5fWtX6NRtwoTET9i2VPfUoQgHPnWi/U8u9/\nA7Nnt27o9fKSOiGRfWDZU7+6c0fc0NtyUXZX19biDw3lRdmJ+grLniTTclH2lrn+8+fFaZ6WKR9P\nT6kTEg0eLHuyGVpt60XZjxwRz8/fUvxTpwJKJU/bTNRTdl/21xob8fGtW/BRKOCjUMDL2RkuvPyT\n5JqbxTN0thT/xYtAbS3g7g54eHR9Gz2aV/Eiasvuy768oQF/+vprXG5owOWGBlxtbISbkxN8FAr4\nfj8AtNy8FQoMZ4NIpqlJPJfPjRtd36qrxcL38BCv29vZwODuzoGBBj+7L/v7NQsCKpuacLmhAZe+\nHwBabuUNDRjp6GgyALQMCt4KBVwde33qILISnQ64dQu4fr3rgeHOHfE0z20HgI4GCHd3wMlJ6p+O\nyHIsewtqVebJAAANQklEQVQYBAHf3LtnMgBcbmjApfp6XG5owDAHh3YDQctNyYawWXo9UFUlFn9X\ng4NWK+5B1NG3hLaDxJgx4kVliGwBy95KBEHAdTMDQcs3BEeZzOzUkI9CATcnJ4vP/EnSaG4WC7/t\nANDRAHHrFjBiRNfbF1oGCO52Sn2JZd8PBEFAlU5ndmroUkMDDIJgOi3k4mK878GBYMAyGIDbt9sP\nAuYGh5s3xSONu7Px2cNDXJbIEix7G3D7+4HA3DeCBoOhw6mhB4cMgZwDwaAgCOK2g46mj+4fIIYO\n7f7AwFNRE8Cyt3nf6fUoNzMQXG5oQLVeD+8OBoLxQ4fCgQPBoCQI4t5GnW1baDs4yOXd2yvJw0Oc\nduI/m8GJZT+A1TY3GweC+6eHqnQ6THJ2NrudYKKzMxz5G20XBEE8HXVXeyS1DA4GQ/f2SvLwEDdU\n85/RwMGyH6Tqm5txpbHR7J5DN3Q6TBw61Ow3gknOznDiYap2q7a2e8cxXL8u7t46ZkzrnkcjRojX\nMWh7Gz68/XPmXnNx4dHRfY1lb4caDQZc7WBqqLKpCeM7GggUCjjzN5K+V19vuudRba14q6szf+vs\ntYYGwNnZ8kGiO69xIBGx7MnEPYMB//n+G8H9U0P/aWzE2CFDTPYW4mkmyBoMBnHw6MlA0dlrbQcS\naw4gA3EgYdlTt+kFAdfMTA21nGZi9PenmWh7ZDFPM0FS62wg6c0gUlsLNDaKF+Ox5gDS8ppCYd2B\nhGXf2Ah89514vDyPaumxtqeZuP9W3tAAVzOnmWi58TQTNFB1NJB0Z6Do6jVzA0lvBpBHH7X3sv/i\nC2DZMvHoFycnsfSVSvG/3b0/ahTAwuqQQRDwbZuji++fHlLI5WaPLOZpJsie9WQg6ey14mJ7L/sW\ngiD+jdy5Ixb/nTvt73f0WnW1OHln6QChVIr7rw2USb8+IAgCbnR0UFl9PRy+P82Eu5MThjk4wMXB\nAcPkcpP7Lg4O4uPvn297v+1zCrmcB6GR3eI0jjUYDOJVtrsaFMwNHnfvAg880PWgYO7+ID8CRhAE\naPV6XKqvR5VOh3qDAXXNza3/bW5G3X3365ubTZZpe7/RYIBzy+DQZpAwN2CYHTi68T4eyEa2imUv\nNb1e/GbQk28UTU3AyJGWDRAt9xWKQT1QmGMQBDS0DAgWDBKWDC5OMlmPBglzA425bzE8BoJ6imU/\nkN27ZzogdPcbxe3b4rSVpQNEy40bss0SBAGNBkOvv4F09j4Z0KNBoruDy1CZjCfeG6RY9vaqocHy\nKaeWx0OGdH+bRNv7I0dyQ3YvCIIAnSBY5RtIR+/TC0KPBgkXuRxD5HI4yWTGm6NMBqf7nmv72NHM\nc20fO8pknBazIpY9WaZlQ7alU0537oi7uA4b1rPtEy4u4t5SnMboU7rvv5n05BuIzmCA7vsBSScI\n0AtCu+faPtabee7+xzKgywHB3EDS8tjk9R4u09WgZcnA5ijhNyeWPfWf+zdkW/KNoqFBPBmLXC6W\nvpOT+A2j5X5nt+4u1xef2dFyPMisW5q7GBD0HQwSLY9NXjezTFcDkjUGrbYZmgXB7ADV1aBljYEt\nYcIEi7qT38Gp5+RycSpn5Ehg0iTL3y8I4qWi7t0Ti787t+4u23a5piZxh+XefmZnywK2NSj19DMd\nHPp0Q7/D91M5g+WcTIYOBqi+GLQamptR0+axpbpcs8/Pz0d8fDz0ej0SEhKwYcOGdsts3boVBw4c\nwKhRo5CSkgJ/f/9uv3egrNnn5eVBo9FIHaNLzGld3c7Z3Gz9AcSCZfMqK6FRKnv/mQaDafHL5eKt\nq/vdWDavthaaUaMsfp81/mxLPiPv0iVoVCpJ/uxu35fJIJPLrbtmv3HjRiQlJcHT0xMRERGIjY2F\nm5ub8fXCwkKcOHECp0+fRnZ2NrZs2YLMzMxuvXcgGXTlJLFBl9PBQbw5O/d5JnPytm2DZtu23n+Q\nwWBa/AaDOJDdf9/cc13cz/vLX6BZs6ZXn9GjHOZ+ls5yfvklNN98Y50/u68+owcryJ2WfXV1NQAg\nNDQUABAeHo6CggJERUUZlykoKMCKFSugVCoRGxuL1157rdvvJSIbI5eLu+L2xe64OTnA3LnW/1xr\n27ZNvNkyQbB454ZOly4qKjJOyQCASqXCqVOnTJYpLCyESqUyPnZ3d0d5eXm33ktERD3Qg+0qvd5A\nKwhCu3kjS3dFGigHfbzxxhtSR+gW5rQu5rSegZARGDg5LdFp2c+YMQO/+MUvjI+Li4sRGRlpsoxa\nrcaFCxcQEREBALh16xa8vLygVCq7fC+AAbFxlohooOt0GsfV1RWAuFdNRUUFcnJyoFarTZZRq9VI\nS0uDVqtFamoqAgICAAAjR47s8r1ERNQ/upzG2blzJ+Lj46HT6ZCQkAA3NzckJSUBAOLj4xESEoLZ\ns2cjODgYSqUSycnJnb6XiIgkIEhIr9cL06dPF5YsWSJljE7V1tYKcXFxgq+vrxAQECB88cUXUkcy\n6/333xcef/xx4bHHHhM2btwodRyjZ599VhgzZowwZcoU43M1NTXC0qVLhQkTJggxMTHC3bt3JUwo\nMpdzy5Ytgr+/vxAYGChs3LhRqK+vlzChyFzOFm+//bYgk8kErVYrQbJWHWXcvXu34O/vL6hUKuGX\nv/ylROlamctZXFwsREVFCdOmTROWLFkiXLhwQcKEomvXrgkajUZQqVTC3LlzhZSUFEEQLP89kvQw\ntl27dkGlUtn0BtrXX38dEydOxLlz53Du3DnjNJUtuX37NrZv346cnBwUFRXh4sWLyM7OljoWAODZ\nZ5/FkSNHTJ577733MHHiRFy6dAnjx4/Hn//8Z4nStTKXMzw8HMXFxTh9+jTq6uqQmpoqUbpW5nIC\nwFdffYWcnBx4enpKkMqUuYznz5/H+++/j4yMDBQXF2PLli0SpWtlLuebb76JuLg4/Pvf/8aTTz6J\nN998U6J0rZycnPDOO++guLgYn3zyCV577TXcvXvX4t8jycq+srIShw8fxnPPPWfTG2lzc3Pxyiuv\nwNnZGY6OjsbtGLZEoVBAEARUV1ejoaEB9fX1GDVqlNSxAABz5sxpl6WwsBDr1q3D0KFDsXbtWhQU\nFEiUrpW5nAsXLoRcLodcLkdERASOHz8uUbpW5nICwObNm/G73/1OgkTtmcuYlZWFdevWwdfXF4C4\ni7bUzOV0dXWFVquFwWCAVqu1id+jsWPHYvr06QAANzc3PPLIIygqKrL490iyst+0aRN27NgBuQ2f\nI6OyshKNjY14/vnnoVar8dZbb6GxsVHqWO0oFAq89957ePjhhzF27FjMmjULISEhUsfqUNtjMPz9\n/VFYWChxoq598MEHiI6OljqGWenp6Rg/fjymTp0qdZQOffbZZzh//jyCg4Px3HPP4cKFC1JHMmvH\njh3YtWsXRo0ahXfffRdvvfWW1JFMXL58GcXFxQgJCbH490iSps3MzMSYMWMQGBho02v1jY2NuHjx\nIpYvX468vDwUFxfj448/ljpWO7du3cLzzz+PCxcuoKKiAl988QUOHTokdawO2fL/c3PefPNNjBgx\nAitXrpQ6Sjv19fXYvn27yX7htvj329jYiNu3b+PEiROIiYnBCy+8IHUks9auXYsNGzZAq9Vi/fr1\nWLdundSRjO7evYtVq1bhnXfewfDhwy3+/yxJ2f/zn/9ERkYGJk2ahNjYWBw7dgxxcXFSROmUj48P\n/Pz8EB0dDYVCgdjYWGRlZUkdq53CwkLMnDkTPj4+GD16NFauXIn8/HypY3VoxowZKCkpAQCUlJRg\nxowZEifq2EcffYTs7GyTvcxsSXl5OSoqKjBt2jRMmjQJlZWVCAoKws2bN6WOZmLmzJlYtWoVFAoF\noqOjUVpaapPfkk+ePIm1a9fC0dER69ats5nfI51Oh+XLl+Ppp59GTEwMAMt/jyQp++3bt+Orr77C\n1atXsX//fsyfPx979+6VIkqXfH19UVBQAIPBgEOHDiEsLEzqSO3MmTMHp0+fxu3bt9HU1ISsrCyE\nh4dLHatDarUau3fvRkNDA3bv3o2ZM2dKHcmsI0eOYMeOHcjIyICzRCc468qjjz6KGzdu4OrVq7h6\n9SrGjx+PL7/8EmPGjJE6monHH38cWVlZEAQBBQUF8Pb2tsm/03nz5iEjIwOAOD22cOFCiROJ39TW\nrVuHKVOm4MUXXzQ+b/HvUV/uMtQdeXl5QnR0tNQxOlRWViao1Wph2rRpwksvvSTU1tZKHcmsDz/8\nUAgNDRWCg4OF1157TWhubpY6kiAIgrB69Wph3LhxwpAhQ4Tx48cLu3fvtsldL1tyOjk5CePHjxf+\n8pe/CD4+PsLEiROF6dOnC9OnTxeef/55qWOa/ftsa9KkSZLvemkuo16vF+Lj4wV/f39h2bJlQmFh\noaQZ2+Zs+X++e/du4fz588Lq1auFqVOnCk8++aRQUlIidUzhxIkTgkwmE6ZNm2b8t5iVlWXx75Hk\nV6oiIqK+Z7u7whARkdWw7ImI7ADLnojIDrDsiYjsAMueiMgOsOyJiOzA/wfai5Sp3wLX9AAAAABJ\nRU5ErkJggg==\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Comparing the points with the plot of Kbc,Kbe vs db in Fig.(12), we can conlcude the following:\n",
"Kbc for fine particles and helium: line 2 in Fig.(12)\n",
"Kbc for coarser particles and ozone: line 3 in Fig.(12)\n",
"Kbe for fine particles and helium: line 4 in Fig.(12)\n",
"Kbe for coarser particles and ozone: line 5 in Fig.(12)\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2, Page 254\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"D=0.69; #Diffusion coefficient of gas in cm**2/s\n",
"umf=1.0; #Velocity at minimum fluidization condition in cm/s\n",
"ephsilonmf=0.5; #Void fraction at minimum fluidization condition\n",
"db=[5,15]; #Equilibrium bubble size in cm\n",
"g=980; #Acceleration due to gravity in cm/s**2\n",
"\n",
"#CALCULATION\n",
"n=len(db);\n",
"i=0;\n",
"Kbc = [0.,0.]\n",
"Kce = [0.,0.]\n",
"Kbe = [0.,0.]\n",
"e = [0.,0.]\n",
"while i<n:\n",
" Kbc[i]=4.5*(umf/db[i])+5.85*((D**0.5*g**0.25)/db[i]**(5/4));#Gas interchange coefficient between bubble and cloud from Eqn.(27)\n",
" Kce[i]=6.77*((D*ephsilonmf*0.711*(g*db[i])**0.5)/db[i]**3)**0.5;#Gas interchange coefficient between emulsion and cloud from Eqn.(34)\n",
" Kbe[i]=(Kbc[i]*Kce[i])/(Kbc[i]+Kce[i]);#Gas interchange coefficient between bubble and emulsion from Eqn.(14)\n",
" e[i]=(Kce[i]-Kbe[i])/Kbe[i];#Error when minor resistance is ignored\n",
" i=i+1;\n",
"\n",
"#OUTPUT\n",
"print 'db(cm)',\n",
"print '\\t\\tCalculated Kbc',\n",
"print '\\tCalculated Kce',\n",
"print '\\t\\tKbe from Eqn.(14)',\n",
"print '\\tErron when minor resistance is ignored (in percentage)'\n",
"i=0;\n",
"while i<n:\n",
" print '%f'%db[i],\n",
" print '\\t%f'%Kbc[i],\n",
" print '\\t%f'%Kce[i],\n",
" print '\\t\\t%f'%Kbe[i],\n",
" print '\\t\\t%f'%(e[i]*100);\n",
" i=i+1; \n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"db(cm) \t\tCalculated Kbc \tCalculated Kce \t\tKbe from Eqn.(14) \tErron when minor resistance is ignored (in percentage)\n",
"5.000000 \t6.337721 \t2.509152 \t\t1.797506 \t\t39.590766\n",
"15.000000 \t2.112574 \t0.635514 \t\t0.488547 \t\t30.082477\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3, Page 255\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Kbe=[0.028,0.05]; #Reported range for gas interchange coefficient between bubble and emulsion\n",
"uo=0.30; #Superficial gas velocity in m/s\n",
"db=0.13; #Equilibrium bubble size in m\n",
"m=7;\n",
"ephsilonmf=0.5; #Void fraction at minimum fluidization condition\n",
"umf=0.0018; #Velocity at minimum fluidization condition in m/s\n",
"D=[9E-6,22E-6]; #Diffusion coefficient of gas in m**2/s\n",
"g=9.81; #Acceleration due to gravity in m/s**2\n",
"\n",
"#CALCULATION\n",
"n=len(Kbe);\n",
"i=0;\n",
"Kbem = [0,0]\n",
"Kbc = [0,0]\n",
"Kce = [0,0]\n",
"#Kbe = [0,0]\n",
"c = [0,0]\n",
"\n",
"while i<n:\n",
" Kbem[i]=(6.0/db)*Kbe[i];#Gas interchange coefficient between bubble and emulsion from Eqn.(19)\n",
" Kbc[i]=4.5*(umf/db)+5.85*((D[i]**0.5*g**0.25)/db**(5.0/4));#Gas interchange coefficient between bubble and cloud from Eqn.(27)\n",
" Kce[i]=6.77*((D[i]*ephsilonmf*0.711*(g*db)**0.5)/db**3)**0.5;#Gas interchange coefficient between emulsion and cloud from Eqn.(34)\n",
" Kbe[i]=(Kbc[i]*Kce[i])/(Kbc[i]+Kce[i]);#Gas interchange coefficient between bubble and emulsion from Eqn.(14)\n",
" c[i]=(Kbem[i]/Kbe[i]);\n",
" i=i+1;\n",
"\n",
"#OUTPUT\n",
"print 'Kbe from Eqn.(19)',\n",
"print '\\tKbc from Eqn.(27)',\n",
"print '\\tKce from Eqn.(34)',\n",
"print '\\tKbe from Eqn.(14)',\n",
"print '\\tComparison of Kbe from Eqn.(19) and that from Eqn.(14)'\n",
"i=0\n",
"while i<n:\n",
" print '%f'%Kbem[i],\n",
" print '\\t\\t%f'%Kbc[i],\n",
" print '\\t\\t%f'%Kce[i],\n",
" print '\\t\\t%f'%Kbe[i],\n",
" print '\\t\\t%f'%c[i]\n",
" i=i+1; \n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Kbe from Eqn.(19) \tKbc from Eqn.(27) \tKce from Eqn.(34) \tKbe from Eqn.(14) \tComparison of Kbe from Eqn.(19) and that from Eqn.(14)\n",
"1.292308 \t\t0.460200 \t\t0.274548 \t\t0.171959 \t\t7.515188\n",
"2.307692 \t\t0.684401 \t\t0.429248 \t\t0.263797 \t\t8.747978\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|