summaryrefslogtreecommitdiff
path: root/Fluidization_Engineering/ch8.ipynb
blob: 9fed0363d76ff667a432c4141e4a95c8f07c75b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8 : High Velocity Fludization"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 1, Page 206\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from numpy import zeros\n",
      "from scipy.optimize import fsolve \n",
      "\n",
      "\n",
      "#INPUT\n",
      "Lmf=2.4;            #Length of bed at minimum fluidized condition in m\n",
      "uo=[2.,4.,6.];         #Superficial gas velocity in m/s\n",
      "GsII=100.;          #Solid circulation rate in kg/m**2 s for Mode II\n",
      "uoIII=4.;            #Superficial gas velocity in m/s for Mode III\n",
      "GsIII=[42.,50.,100.,200.,400.];          #Solid circulation rate in kg/m**2 s for Mode III\n",
      "GsIV=[70.,100.,120.];                  #Solid circulation rate in kg/m**2 s for Mode IV\n",
      "dt=0.4;                             #Column diamter in m\n",
      "Ht=10.;                              #Height of column in m\n",
      "rhos=1000.;                         #Density of solid in kg/m**3\n",
      "dpbar=55.;                          #Particle diameter in micrometer\n",
      "ephsilonmf=0.5;                     #Void fraction at minimum fluidization condition\n",
      "\n",
      "#CALCULATION\n",
      "#Mode I\n",
      "ephsilonstar=0.01;                  #Saturation carrying capacity of gas\n",
      "ephsilonsd=[0.2,0.16,0.14];         #Solid holdup in lower dense region from Fig.8(b) for various uo\n",
      "n=len(uo);\n",
      "i=0;\n",
      "Hfguess=2.;          #Guess value of height\n",
      "a = zeros(n)\n",
      "Hf = zeros(n)\n",
      "Hd = zeros(n)\n",
      "ephsilonse = zeros(n)\n",
      "GsI = zeros(n)\n",
      "#    endfunction\n",
      " \n",
      "while i<n:\n",
      "    a[i]= 3./uo[i];         #Decay consmath.tant\n",
      "    def solver_func(Hf):            #Function defined for solving the system\n",
      "        return Lmf*(1-ephsilonmf)-((ephsilonsd[i]-(ephsilonstar+(ephsilonsd[i]-ephsilonstar)*math.exp(-a[i]*Hf)))/a[i])-Ht*ephsilonsd[i]+Hf*(ephsilonsd[i]-ephsilonstar);\n",
      "        \n",
      "    Hf[i] = fsolve(solver_func,1E-6)\n",
      "    Hd[i]=Ht-Hf[i];#Height of lower densce region\n",
      "    ephsilonse[i]=ephsilonstar+(ephsilonsd[i]-ephsilonstar)*math.exp(-a[i]*Hf[i]);#Solid holdup at exit\n",
      "    GsI[i]=rhos*uo[i]*ephsilonse[i];#Solid circulation rate from Eqn.(4)\n",
      "    i=i+1;\n",
      "\n",
      "#Mode II\n",
      "i=0;\n",
      "Hfguess2=2;#Guess value of height\n",
      "ephsilonseII = zeros(n)\n",
      "HdII = zeros(n)\n",
      "LmfII = zeros(n)\n",
      "HfII = zeros(n)\n",
      "while i<n:\n",
      "    ephsilonseII[i]=GsII/(rhos*uo[i]);#Solid holdup at exit\n",
      "    def solver_func1(Hf):           #Function defined for solving the system\n",
      "        return ephsilonseII[i]-ephsilonstar-(ephsilonsd[i]-ephsilonstar)*math.exp(-a[i]*Hf);#From Eqn.(7)\n",
      "    HfII[i] = fsolve(solver_func1,1E-6)\n",
      "    HdII[i]=Ht-HfII[i];#Height of lower dense region\n",
      "    #Length of bed minimum fluidization condtion\n",
      "    LmfII[i]=(1-ephsilonmf)**-1*((ephsilonsd[i]-ephsilonseII[i])/a[i])+Ht*ephsilonsd[i]-HfII[i]*(ephsilonsd[i]-ephsilonstar);\n",
      "    i=i+1;\n",
      "\n",
      "#Mode III\n",
      "aIII = 3./uoIII;            #Decay consmath.tant\n",
      "ephsilonsdIII=0.16;         #Solid holdup at lower dense region\n",
      "i=0;\n",
      "m=len(GsIII);\n",
      "Hfguess3=2;#Guess value of height \n",
      "ephsilonseIII = zeros(m)\n",
      "HdIII = zeros(m)\n",
      "ephsilonseIII = zeros(m)\n",
      "LmfIII = zeros(m)\n",
      "HfIII = zeros(m)\n",
      "while i<m:\n",
      "    ephsilonseIII[i]=GsIII[i]/(rhos*uoIII);#Solid holdup at exit\n",
      "    def solver_func2(Hf):       #Function defined for solving the system\n",
      "        return ephsilonseIII[i]-ephsilonstar-(ephsilonsdIII-ephsilonstar)*math.exp(-aIII*Hf);#From Eqn.(7)\n",
      "\n",
      "    HfIII[i] = fsolve(solver_func2,1E-6)\n",
      "    HdIII[i]=Ht-HfIII[i];       #Height of lower dense region\n",
      "    #Length of bed at minimum fluidization condition\n",
      "    LmfIII[i]=(1-ephsilonmf)**-1*(((ephsilonsdIII-ephsilonseIII[i])/aIII)+Ht*ephsilonsdIII-HfIII[i]*(ephsilonsdIII-ephsilonstar));\n",
      "    i=i+1;\n",
      "\n",
      "#Mode IV\n",
      "i=0;\n",
      "Hfguess4=2;#Guess value of height\n",
      "aIV = zeros(n)\n",
      "ephsilonseIV = zeros(n)\n",
      "HdIV = zeros(n)\n",
      "HfIV = zeros(n)\n",
      "LmfIV = zeros(n)\n",
      "while i<n:\n",
      "    aIV[i]=3./uo[i];            #Decay consmath.tant\n",
      "    ephsilonseIV[i]=GsIV[i]/(rhos*uo[i]);       #Solid holdup at exit\n",
      "    def solver_func3(Hf):       #Function defined for solving the system\n",
      "        return ephsilonseIV[i]-ephsilonstar-(ephsilonsd[i]-ephsilonstar)*math.exp(-aIV[i]*Hf);      #From Eqn.(7)\n",
      "\n",
      "    HfIV[i] = fsolve(solver_func3,1E-6)\n",
      "    HdIV[i]=Ht-HfIV[i];#Height of lower dense region\n",
      "    #Length of bed at minimum fluidization condition\n",
      "    LmfIV[i]=(1-ephsilonmf)**-1*(((ephsilonsd[i]-ephsilonseIV[i])/aIV[i])+Ht*ephsilonsd[i]-HfIV[i]*(ephsilonsd[i]-ephsilonstar));\n",
      "    i=i+1;\n",
      "\n",
      "#OUTPUT\n",
      "print 'Mode I';\n",
      "print '\\tuom/s\\t\\tephsilonse-\\tHfm\\t\\tHdm\\t\\tGskg/m**2 s';\n",
      "i=0;\n",
      "while i<n:\n",
      "    print '\\t%f\\t%f\\t%f\\t%f\\t%f'%(uo[i],ephsilonse[i],Hf[i],Hd[i],GsI[i]);\n",
      "    i=i+1;\n",
      "\n",
      "print 'Mode II';\n",
      "print '\\tuom/s\\t\\tephsilonse-\\tHfm\\t\\tHdm\\t\\tLmfm';\n",
      "i=0;\n",
      "while i<n:\n",
      "    print '\\t%f\\t%f\\t%f\\t%f\\t%f'%(uo[i],ephsilonseII[i],HfII[i],HdII[i],LmfII[i]);\n",
      "    i=i+1;\n",
      "\n",
      "print 'Mode III';\n",
      "print '\\tGskg/m** s\\tephsilonse-\\tHfm\\t\\tHdm\\t\\tLmfm';\n",
      "i=0;\n",
      "while i<m:\n",
      "    print '\\t%f\\t%f\\t%f\\t%f\\t%f'%(GsIII[i],ephsilonseIII[i],HfIII[i],HdIII[i],LmfIII[i]);\n",
      "    i=i+1;\n",
      "\n",
      "print 'Mode IV';\n",
      "print '\\tuom/s\\t\\tGskg/m**2 s\\tephsilonse-\\tHfm\\t\\tLmfm';\n",
      "i=0;\n",
      "while i<n:\n",
      "    print '\\t%f\\t%f\\t%f\\t%f\\t%f'%(uo[i],GsIV[i],ephsilonseIV[i],HfIV[i],LmfIV[i]);\n",
      "    i=i+1;\n",
      "\n",
      "#====================================END OF PROGRAM ======================================================"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mode I\n",
        "\tuom/s\t\tephsilonse-\tHfm\t\tHdm\t\tGskg/m**2 s\n",
        "\t2.000000\t0.192856\t0.025551\t9.974449\t385.711493\n",
        "\t4.000000\t0.017870\t3.930041\t6.069959\t71.481458\n",
        "\t6.000000\t0.037349\t3.117707\t6.882293\t224.094133\n",
        "Mode II\n",
        "\tuom/s\t\tephsilonse-\tHfm\t\tHdm\t\tLmfm\n",
        "\t2.000000\t0.050000\t1.038763\t8.961237\t2.002635\n",
        "\t4.000000\t0.025000\t3.070113\t6.929887\t1.499483\n",
        "\t6.000000\t0.016667\t5.940829\t4.059171\t1.121026\n",
        "Mode III\n",
        "\tGskg/m** s\tephsilonse-\tHfm\t\tHdm\t\tLmfm\n",
        "\t42.000000\t0.010500\t7.605043\t2.394957\t1.317154\n",
        "\t50.000000\t0.012500\t5.459126\t4.540874\t1.955596\n",
        "\t100.000000\t0.025000\t3.070113\t6.929887\t2.638966\n",
        "\t200.000000\t0.050000\t1.762341\t8.237659\t2.964631\n",
        "\t400.000000\t0.100000\t0.681101\t9.318899\t3.155670\n",
        "Mode IV\n",
        "\tuom/s\t\tGskg/m**2 s\tephsilonse-\tHfm\t\tLmfm\n",
        "\t2.000000\t70.000000\t0.035000\t1.352099\t3.706202\n",
        "\t4.000000\t100.000000\t0.025000\t3.070113\t2.638966\n",
        "\t6.000000\t120.000000\t0.020000\t5.129899\t1.946226\n"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stderr",
       "text": [
        "/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py:227: RuntimeWarning: The iteration is not making good progress, as measured by the \n",
        "  improvement from the last ten iterations.\n",
        "  warnings.warn(msg, RuntimeWarning)\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}