1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
{
"metadata": {
"name": "",
"signature": "sha256:69d28aca1d8ec525f15842df275d6e6c6108139c968df651029692a500222ce7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11 : Particle to Gas Mass and Heat Transfer"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
"For more information, type 'help(pylab)'.\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1, Page 265\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"db=0.37; #Equilibrium bubble size in cm\n",
"dp=0.028; #Particle size in cm\n",
"rhos=1.06; #Density of solids in g/cc\n",
"ephsilonmf=0.5; #Void fraction at minimum fluidization condition\n",
"phis=0.4; #Sphericity of solids\n",
"gammab=0.005; #Ratio of volume of dispersed solids to that of bubble phase\n",
"rhog=1.18E-3; #Density of air in g/cc\n",
"myu=1.8E-4; #Viscosity of gas in g/cm s\n",
"D=0.065; #Diffusion coefficient of gas in cm**2/s\n",
"Sc=2.35; #Schmidt number\n",
"etad=1; #Adsorption efficiency factor\n",
"y=1;\n",
"umf=1.21; #Velocity at minimum fluidization condition in cm/s\n",
"ut=69; #Terminal velocity in cm/s\n",
"g=980; #Acceleration due to gravity in square cm/s**2\n",
"uo=[10,20,30,40,50];#Superficial gas velocity in cm/s\n",
"\n",
"#CALCULATION\n",
"n=len(uo);\n",
"i=0;\n",
"Rept=(dp*ut*rhog)/myu;\n",
"Shstar=2+(0.6*(Rept**0.5)*(Sc**(1/3)));#Sherwood no. from Eqn.(1)\n",
"Kbc=4.5*(umf/db)+5.85*((D**0.5*g**0.25)/db**(5/4));#Gas interchange coefficient between bubble and cloud from Eqn.(10.27)\n",
"ubr=0.711*(g*db)**0.5;#Rise velocity of the bubble\n",
"x = [0,0,0,0,0]\n",
"Shbed = [0,0,0,0,0]\n",
"Rep = [0,0,0,0,0]\n",
"while i<n:\n",
" x[i]=(uo[i]-umf)/(ubr*(1-ephsilonmf));#The term delta/(1-epshilonf) after simplification\n",
" Shbed[i]=x[i]*((gammab*Shstar*etad)+((phis*dp**2*y)/(6*D))*Kbc);#Sherwood no. from Eqn.(11)\n",
" Rep[i]=(dp*uo[i]*rhog)/myu;#Reynolds of the particle\n",
" i=i+1;\n",
"\n",
"#OUTPUT\n",
"print 'The desired result is the relationship between Shbed and Rep The points gives a straight line of the form y=mx+c'\n",
"print 'Rep',\n",
"print '\\t\\tShbed'\n",
"i=0;\n",
"while i<n:\n",
" print '%f'%Rep[i],\n",
" print '\\t%f'%Shbed[i]\n",
" i=i+1;\n",
"import matplotlib.pyplot as plt\n",
"plt.plot(Rep,Shbed);\n",
"plt.xlabel(\"Rep\");\n",
"plt.ylabel(\"Shbed\");\n",
"\n",
"plt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"The desired result is the relationship between Shbed and Rep The points gives a straight line of the form y=mx+c\n",
"Rep \t\tShbed\n",
"1.835556 \t0.065762\n",
"3.671111 \t0.140576\n",
"5.506667 \t0.215391\n",
"7.342222 \t0.290206\n",
"9.177778 \t0.365020\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEMCAYAAADeYiHoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9YVHXe//HnKJSZpWlkyFCoYOAPkARZaykqlNVWbsXq\nxixN0UjXq612225rt7Td2uiue3OzWir7YRmyZYmVsmTKav4AFdS+64/IZEXSNNMSoZDx8/3j5Kwk\nKqMDZwZej+viumaY84EXVzbveX/O53yOwxhjEBER+Yk2dgcQERHfpAIhIiINUoEQEZEGqUCIiEiD\nVCBERKRBKhAiItKgJikQ+fn5REZGEhERQVZW1kmPW7t2LQEBAcyfP9/jsSIi0rQc3r4OwuVyccUV\nV7BkyRJCQkKIj48nJyeHqKioE44bPHgw7du3Z/z48YwaNarRY0VEpOl5vYMoLi4mPDycsLAwAgMD\nSU9PJy8v74Tjnn32WW666SaCgoI8HisiIk3P6wWisrKS0NBQ93On00llZeUJx+Tl5TF58mQAHA5H\no8eKiEjzCPD2Dzz2Zn8q99xzD0888QQOhwNjDMdmuRoz1pPjRESkPk/OKni9gwgJCaGiosL9vKKi\nAqfTWe+Y9evXk56eTvfu3Zk/fz5Tpkxh4cKFjRp7zLHC4itfjzzyiO0Z/CWXMilTa8jli5k85fUO\nIi4ujrKyMsrLy+nWrRu5ubnk5OTUO+aLL75wPx4/fjzDhw8nNTWVurq6044VEZHm4fUCERAQwKxZ\ns0hJScHlcpGRkUFUVBTZ2dkAZGZmejxWRESan9cLBMDQoUMZOnRove+drDC8+uqrpx3rD5KSkuyO\n0CBfzKVMjaNMjeeLuXwxk6e8fh1Eczh2cltERBrP0/dObbUhIiINUoEQEZEGqUCIiEiDVCBERKRB\nKhAiItIgFQgREWmQCoSIiDRIBUJERBqkAiEiIg1SgRARkQapQIiISINUIEREpEEqECIi0iAVCBER\naZAKhIiINEgFQkSkmZSXw+9+B0eP2p2kcVQgRESamDHw+usQHw9BQXanabwmueWoiIhY9u+HzEzY\ntg2WLIGYGLsTNZ46CBGRJpKfD9HRcPnlsHatfxUHUAchIuJ11dXWuYaFC+GNN+D66+1OdGbUQYiI\neNH69TBgAHzzDWzc6L/FAVQgRES8oq4OHnsMhg6Fhx+Gt96Ciy6yO9XZaZICkZ+fT2RkJBEREWRl\nZZ3wel5eHjExMcTGxjJgwACWLl3qfi0sLIzo6GhiY2MZOHBgU8QTEfGqL76Aa6+FpUutDmL0aLsT\neYfDGGO8+QNdLhdXXHEFS5YsISQkhPj4eHJycoiKinIfc/jwYc4//3wAPv30U0aOHMnnn38OQPfu\n3Vm/fj2dO3c+eWiHAy/HFhHxmDHw6qvwwAPw4IPw619DGx+el/H0vdPrJ6mLi4sJDw8nLCwMgPT0\ndPLy8uoViGPFAaCqqoqLL7643s/Qm7+I+Lp9++DOO63uYdky6NvX7kTe5/UCUVlZSWhoqPu50+mk\nqKjohOMWLFjAtGnT2L17NwUFBe7vOxwOkpOTadu2LZmZmUyaNKnB3zN9+nT346SkJJKSkrz2N4iI\nnMqiRTBxItx2G8ybB+eea3eihhUWFlJYWHjG471eIBwOR6OOGzFiBCNGjGDFihXcfvvtbNu2DYCV\nK1cSHBzMvn37GDx4MJGRkSQmJp4w/vgCISLSHA4fht/+FhYvhpwc67yDL/vph+cZM2Z4NN7rs2Uh\nISFUVFS4n1dUVOB0Ok96fGJiInV1dezfvx+A4OBgAIKCghg5ciTFxcXejigi4rHiYrjySqtIbNzo\n+8XBG7xeIOLi4igrK6O8vJza2lpyc3NJTU2td8z27dvd5xlKSkoA6NKlC9XV1Rw6dAiwTmQXFBTQ\nr18/b0cUEWm0ujp49FEYPhz+9CeYMwc6drQ7VfPw+hRTQEAAs2bNIiUlBZfLRUZGBlFRUWRnZwOQ\nmZnJ/PnzmTNnDoGBgXTo0IF58+YBsGfPHtLS0gCoq6tjzJgxDBkyxNsRRUQapawMbr8dLrwQSkog\nJMTuRM3L68tcm4OWuYpIUzIGXnrJWrr68MMwdapvL19tLNuXuYqI+LOvvoJJk6CiApYvh9697U5k\nnxZQE0VEvOP996F/f+uahqKi1l0cQB2EiAhVVXDfffDRR/D22/Dzn9udyDeogxCRVm31aqtrOHLE\nWr6q4vAf6iBEpFU6cgT++EfIzobnn4dRo+xO5HtUIESk1dm2zVq+2qULbNgAP16fKz+hKSYRaTWM\ngRdegKuvhnHjrD2VVBxOTh2EiLQKe/ZARoa1jPWTTyAy0u5Evk8dhIi0eAsWWCeir7zSOimt4tA4\n6iBEpMU6dMi6ic8//wnvvgtXXWV3Iv+iDkJEWqSVK62uoU0b60S0ioPn1EGISItSWwszZsDs2fC3\nv8GIEXYn8l8qECLSYmzZYt3lLTjY6houvdTuRP5NU0wi4veMgVmzIDHRuk/0+++rOHiDOggR8Wtf\nfgnjx8PBg7BqFfTqZXeilkMdhIj4rXfegdhYGDTIurZBxcG71EGIiN/59lu4+26rY1i4EBIS7E7U\nMqmDEBG/smKFtXy1XTsoLVVxaErqIETEL/zwAzzyCLz+Orz4Igwfbneilk8FQkR83r/+BWPGwGWX\nWfdsuOQSuxO1DppiEhGfdfQozJwJSUkwdSrk5ak4NCd1ECLik3btspavVlVZG+yFh9udqPVRByEi\nPic319p59ZprrJPSKg72aJICkZ+fT2RkJBEREWRlZZ3wel5eHjExMcTGxjJgwACWLl3a6LEi0nId\nPGhtlfHww/Dhh/CHP0CA5jnsY7ysrq7O9OzZ0+zYscPU1taamJgYs3nz5nrHVFVVuR9v2rTJ9OzZ\ns9FjjTGmCWKLiM2WLjXmssuMmTzZmOPeIsSLPH3v9HoHUVxcTHh4OGFhYQQGBpKenk5eXl69Y84/\n/3z346qqKi6++OJGjxWRluWHH+D++63O4W9/g+efh+PeIsRGXm/eKisrCQ0NdT93Op0UFRWdcNyC\nBQuYNm0au3fvpqCgwKOxANOnT3c/TkpKIikpyTt/gIg0m08/tZavhodby1d//KwoXlJYWEhhYeEZ\nj/d6gXA4HI06bsSIEYwYMYIVK1Zw++23s3XrVo9+z/EFQkT8y9Gj8Je/wBNPwJNPwh13QCPfOsQD\nP/3wPGPGDI/Ge71AhISEUFFR4X5eUVGB0+k86fGJiYnU1dXxzTff4HQ6PRorIv6nogLGjbNu7FNU\nBD162J1ITsbr5yDi4uIoKyujvLyc2tpacnNzSU1NrXfM9u3bsc6XQElJCQBdunRp1FgR8V9vvQUD\nBkBysnWfaBUH3+b1DiIgIIBZs2aRkpKCy+UiIyODqKgosrOzAcjMzGT+/PnMmTOHwMBAOnTowLx5\n8045VkT824EDMGWKdZ4hP9+6xkF8n8Mc+yjvRxwOB34YW6RV+vhj6xzDyJGQlQXnnWd3otbL0/dO\nXYIiIk3i++/hwQfh73+H2bMhJcXuROIpFQgR8bqNG63lq1FR1uMuXexOJGdCezGJiNe4XNay1eRk\n+N3vrO5BxcF/qYMQEa/4979h7FgwBtauhbAwuxPJ2VIHISJnxRiYMwfi4uDGG2HZMhWHlkIdhIic\nsf374a67YMsW+Ogj617R0nKogxCRM1JQADEx4HTCunUqDi2ROggR8UhNDTzwALz3Hrz2mnVCWlom\ndRAi0mglJdZWGXv3WstXVRxaNhUIETktlwv+/Gf4xS/g97+HefOgc2e7U0lT0xSTiJzSjh1w++0Q\nGGida7jsMrsTSXNRByEiDTIGXn0VBg609lH6+GMVh9ZGHYSInODrr+HOO+Hzz63CEB1tdyKxgzoI\nEaln8WJr+WrPnlBcrOLQmqmDEBEAqqvh/vvhgw9g7lzQbd5FHYSIsHYtxMbCt99ay1dVHATUQYi0\nanV11vLVZ5+1vv77v+1OJL5EBUKkldq+3Vq+2r69dQGc02l3IvE1mmISaWWMgZdfhp/9zOoYCgpU\nHKRh6iBEWpG9e2HSJNi5EwoLoU8fuxOJL1MHIdJKfPihteNqVBSsWaPiIKenDkKkhTt8GH7zG/jH\nP6w9lK65xu5E4i/UQYi0YEVFVtdQUwMbNqg4iGeapEDk5+cTGRlJREQEWVlZJ7w+d+5cYmJiiI6O\n5uqrr2bTpk3u18LCwoiOjiY2NpaBAwc2RTyRFu/IEZg+HVJTrWWsr78OHTvanUr8jdenmFwuF1On\nTmXJkiWEhIQQHx9PamoqUVFR7mN69OjB8uXL6dixI/n5+dx5552sWbMGAIfDQWFhIZ21l7DIGSkr\ng9tug4sugtJS6NbN7kTir7zeQRQXFxMeHk5YWBiBgYGkp6eTl5dX75hBgwbR8cePMwkJCezatave\n68YYb8cSafGMgexsuOoq6/qGxYtVHOTseL2DqKysJDQ01P3c6XRSVFR00uNnz57NsGHD3M8dDgfJ\nycm0bduWzMxMJk2a1OC46dOnux8nJSWRpL0BpBX76iuYOBG+/BKWL7dWKokUFhZSWFh4xuO9XiAc\nDkejj122bBmvvPIKK1eudH9v5cqVBAcHs2/fPgYPHkxkZCSJiYknjD2+QIi0Znl5cNddMGECzJ8P\n55xjdyLxFT/98DxjxgyPxnu9QISEhFBRUeF+XlFRgbOByzQ3bdrEpEmTyM/P56KLLnJ/Pzg4GICg\noCBGjhxJcXFxgwVCpLWrqoJ77oGlS+Gdd+Dqq+1OJC3NSQvE008/7X7scDjc5wWOdQj33Xdfg+Pi\n4uIoKyujvLycbt26kZubS05OTr1jdu7cSVpaGm+++Sbh4eHu71dXV+Nyubjgggs4fPgwBQUFPPLI\nI2f+14m0UKtXW+cZrr3W2n31ggvsTiQt0UkLxKFDh3A4HGzbto21a9eSmpqKMYYPPvjglMtPAwIC\nmDVrFikpKbhcLjIyMoiKiiI7OxuAzMxMHn30UQ4cOMDkyZMBCAwMpLi4mD179pCWlgZAXV0dY8aM\nYciQId78e0X82pEj8Oij8NJL8MIL1q1ARZqKw5xmyVBiYiKLFi3igh8/ohw6dIhhw4axYsWKZgnY\nkOM7GpHWYts2a/lqUBC88gpceqndicTfePreedplrnv37iUwMND9PDAwkL17955ZOhHxmDHw3HPW\nOYYJE6w9lVQcpDmc9iT12LFjGThwIGlpaRhjWLBgAePGjWuObCKt3u7dVlH4+mtYuRKuuMLuRNKa\nnHaKCWD9+vV88sknAFxzzTXExsY2ebBT0RSTtAbvvgtTpsCdd8If/gDHNfIiZ8TT985GLXOtrq7m\nggsuYMKECezbt48dO3bQvXv3Mw4pIif33Xfw61/DihWwYIF1Yx8RO5z2HMT06dN58skneeKJJwCo\nra3ltttua/JgIq3RJ59Yu68GBlq7r6o4iJ1O20G89957lJaWMmDAAMC6EO7QoUNNHkykNamttXZf\nffVVaz+l1FS7E4k0okCce+65tGnzn0bj8OHDTRpIpLXZvNlavhoSYnUNXbvanUjEctoppptvvpnM\nzEwOHjzIiy++yA033MDEiRObI5tIi3b0KPz1r9bV0HfdBQsXqjiIb2nUKqaCggIKCgoASElJYfDg\nwU0e7FS0ikn8XWUljB9vnZB+4w2IiLA7kbQGTbKKqV+/ftTU1OBwOOjXr98ZhxMRePttmDoVfvUr\nePBBCNCd4cVHnXaK6eWXXyYhIYF3332X+fPnk5CQwOzZs5sjm0iL8u23MHYsPPQQvP8+PPywioP4\nttNOMfXq1YvVq1fTpUsXAPbv38+gQYP47LPPmiVgQzTFJP5m+XKrOAwdCk89Beefb3ciaY28PsV0\n8cUX06FDB/fzDh06cPHFF59ZOpFW5ocfrE7hjTesHVhvvNHuRCKNd9r7QYSHh5OQkMCIESMAyMvL\nIzo6unnSifix//f/rOWrYWHWPRuCguxOJOKZ094PomfPnvTo0cN9o6D/+q//8ui2oiKtzdGjMHMm\nPP44ZGVZq5X0v4z4o0Ytc/U1OgchvmrXLrjjDqipsaaVevSwO5HIf3j9HMS2bdt46qmnKC8vp66u\nzv1Lli5deuYpRVqgefPg7rutjfYeeEArlMT/nbaDiI6OZvLkyVx55ZW0bdvWGuRwuPdmsoM6CPEl\nBw9a1zSsXw9vvglxcXYnEmmY1zuIwMBA972jRaS+pUutKaXUVCgpgfbt7U4k4j0n7SC++eYbjDE8\n++yzBAUFkZaWxrnnnut+vXPnzs0W8qfUQYjdvv/euuAtNxdefhl+8Qu7E4mcnqfvnSctEGFhYadc\nrbRjxw7P03mJCoTYadMma/lqr17W1tw/XkMq4vO8ViCKi4sJDQ0lODgYgNdee4358+cTFhbG9OnT\n3VdW20EFQuxw9Cj83/9ZS1efesq6MlrLV8WfePreedK9mDIzM91TSsuXL2fatGnccccddOzYkczM\nzLNPKuJHdu6EG26AvDwoLoZx41QcpOU7aYE4evSo+zxDbm4umZmZjBo1ij/96U+UlZWd8ofm5+cT\nGRlJREQEWVlZJ7w+d+5cYmJiiI6O5uqrr2bTpk2NHivSnIyBuXOtlUkpKVBYCLodu7Qa5iT69Olj\namtrjTHG9OrVyxQWFrpf692798mGmbq6OtOzZ0+zY8cOU1tba2JiYszmzZvrHbNq1Spz8OBBY4wx\nixcvNgkJCY0e++OU2El/v4i37N9vzC23GBMVZUxJid1pRM6ep++dJ+0gRo8ezbXXXktqairt27cn\nMTERgLKyMjp16nTSglNcXEx4eDhhYWEEBgaSnp5OXl5evWMGDRpEx44dAUhISGDXrl2NHivSHJYs\ngZgYCA62rm+IjbU7kUjzO+l1EA899BDXX389e/bsYciQIe77Upsfl76eTGVlJaGhoe7nTqeToqKi\nkx4/e/Zshg0b5vHY6dOnux8nJSWRlJR00t8h0lg1NTBtGsyfD6+8AjbfPFHkrBQWFlJYWHjG4095\nodygQYNO+F6vXr1O+QM92chv2bJlvPLKK6xcudLjsccXCBFv2LABxoyBvn2t3VdtvNRHxCt++uF5\nxowZHo0/7R3lPBUSEkJFRYX7eUVFBU6n84TjNm3axKRJk1i4cCEXXXSRR2NFvMnlspauDhlidQ/z\n5qk4iEAj70ntibi4OMrKyigvL6dbt27k5uaSk5NT75idO3eSlpbGm2++SXh4uEdjRbypvNy6nqFN\nG1i7Fi6/3O5EIr7D6wUiICCAWbNmkZKSgsvlIiMjg6ioKLKzswHr+opHH32UAwcOuPd4CgwMpLi4\n+KRjRbzNGJgzB377W2vn1XvvhR/3ohSRH+l+ENLq7N8PmZmwbZt1jYNukCithdeupBZpif7xD2v5\n6uWXW1NKKg4iJ6dbmkirUF1tTSXl5VlTS9dfb3ciEd+nDkJavPXrYcAAa2pp40YVB5HGUoGQFsvl\ngsceg6FD4eGH4a234McV1SLSCJpikhbpiy/g9tuhXTurgzjuAn0RaSR1ENKiGGNtkZGQADfdBB99\npOIgcqbUQUiLsW8f3Hmn1T0sW2ZtmSEiZ04dhLQIixZZy1cjIqwb+qg4iJw9dRDi1w4ftq6GXrwY\ncnLg2mvtTiTScqiDEL9VXAxXXmkViY0bVRxEvE0dhPidujp4/HF47jmYNQtuvtnuRCItkwqE+JWy\nMmv56oUXQkkJhITYnUik5dIUk/gFY+DFF2HQILj1VsjPV3EQaWrqIMTn7d0LEydCRQUsXw69e9ud\nSKR1UAchPu39963lq337QlGRioNIc1IHIT6pqgruu8+6Evrtt+HnP7c7kUjrow5CfM6aNRAbC0eO\nWMtXVRxE7KEOQnzGkSPwxz9CdjY8/zyMGmV3IpHWTQVCfMJnn8Ftt0GXLrBhAwQH251IRDTFJLYy\nBl54Aa66CsaNs/ZUUnEQ8Q3qIMQ2e/ZARgZ89RV88glERtqdSESOpw5CbLFgAfTvb+2ltHq1ioOI\nL1IHIc3q0CH49a/hn/+Ed9+1ppZExDc1SQeRn59PZGQkERERZGVlnfD61q1bGTRoEO3atePpp5+u\n91pYWBjR0dHExsYycODApognNlm50uoa2rSxTkSrOIj4Nq93EC6Xi6lTp7JkyRJCQkKIj48nNTWV\nqKgo9zFdunTh2WefZcGCBSeMdzgcFBYW0rlzZ29HE5vU1sKMGTB7NvztbzBihN2JRKQxvN5BFBcX\nEx4eTlhYGIGBgaSnp5OXl1fvmKCgIOLi4ggMDGzwZxhjvB1LbLJli7XB3saNVteg4iDiP7zeQVRW\nVhJ63F3inU4nRUVFjR7vcDhITk6mbdu2ZGZmMmnSpAaPmz59uvtxUlISSUlJZxpZmoAx1v0apk+H\nxx6z7hXtcNidSqR1KSwspLCw8IzHe71AOM7yXWDlypUEBwezb98+Bg8eTGRkJImJiSccd3yBEN/y\n5ZcwYQJ88w2sWgW9etmdSKR1+umH5xkzZng03utTTCEhIVRUVLifV1RU4HQ6Gz0++MerpIKCghg5\nciTFxcXejihN6J13rH2UfvYz66S0ioOI//J6gYiLi6OsrIzy8nJqa2vJzc0lNTW1wWN/eq6hurqa\nQ4cOAXD48GEKCgro16+ftyNKE/j2W+tK6GnTYOFCa2rpJKeYRMRPeH2KKSAggFmzZpGSkoLL5SIj\nI4OoqCiys7MByMzMZM+ePcTHx/Pdd9/Rpk0bZs6cyebNm9m7dy9paWkA1NXVMWbMGIYMGeLtiOJl\nK1bA2LEwZAiUlkKHDnYnEhFvcBg/XDLkcDi00skH1NbCww/D669btwMdPtzuRCJyKp6+d+pKajkj\n//qXtftqaKi1hPWSS+xOJCLepr2YxCNHj8LMmZCUBL/6FeTlqTiItFTqIKTRdu2C8eOt24GuXg3h\n4XYnEpGmpA5CGiU319p59ZprrJPSKg4iLZ86CDmlgwdh6lRYuxY+/BDi4+1OJCLNRR2EnFRhIcTE\nwIUXQkmJioNIa6MOQk7www/w+9/DW2/Byy/D0KF2JxIRO6hASD2ffgpjxljnGDZuhIsvtjuRiNhF\nU0wCWMtXn34arr8e7r0X5s9XcRBp7dRBCBUV1j5KtbVQVAQ9etidSER8gTqIVu6tt2DAAEhOtu4T\nreIgIseog2ilDhyAKVOs8wz5+dY1DiIix1MH0Qp9/LG1fDUoCNavV3EQkYapg2hFvv8eHnwQ/v53\nmD0bUlLsTiQivkwFopXYuNFavhoVZT3u0sXuRCLi6zTF1MK5XPDkk9ZJ6N/9zuoeVBxEpDHUQbRg\n//63dac3Y6y9lMLC7E4kIv5EHUQLZAy88QbExcGNN8KyZSoOIuI5dRAtzP79MHkybN4MH30E/fvb\nnUhE/JU6iBakoMBavhoSAuvWqTiIyNlRB9EC1NTAAw/Ae+/Ba69ZJ6RFRM6WOgg/V1JibZWxd6+1\nfFXFQUS8RQXCT7lc8Oc/wy9+Yd27IScHOne2O5WItCRNUiDy8/OJjIwkIiKCrKysE17funUrgwYN\nol27djz99NMejRXYsQOuvdY657BuHdx6KzgcdqcSkZbG6wXC5XIxdepU8vPz2bx5Mzk5OWzZsqXe\nMV26dOHZZ5/lt7/9rcdjWzNj4NVXYeBAGDnS2lPpssvsTiUiLZXXC0RxcTHh4eGEhYURGBhIeno6\neXl59Y4JCgoiLi6OwMBAj8e2Vl9/DaNGwV/+YhWG3/wG2miCUESakNdXMVVWVhIaGup+7nQ6KSoq\n8vrY6dOnux8nJSWRlJR0Rnn9weLFMHEijB5t3b+hXTu7E4mIPygsLKSwsPCMx3u9QDjOYjLck7HH\nF4iWqroa7r8fPvgA3nwTrrvO7kQi4k9++uF5xowZHo33+iRFSEgIFRUV7ucVFRU4nc4mH9vSrF0L\nsbHw7bfW8lUVBxFpbl4vEHFxcZSVlVFeXk5tbS25ubmkpqY2eKwx5ozHtlR1dfDHP1p7KD36qNU5\ndOpkdyoRaY28PsUUEBDArFmzSElJweVykZGRQVRUFNnZ2QBkZmayZ88e4uPj+e6772jTpg0zZ85k\n8+bNdOjQocGxrcX27XD77dC+vXUBXCttnkTERzjMTz/G+wGHw3FC9+HPjLHu8DZtGjz0ENx9t1Yo\niYj3efreqb2YbLZ3L0yaZN27Ydky6NvX7kQiIhZ9TrXRBx9YO65GRUFRkYqDiPgWdRA2OHwY7rsP\n/vEPmDcPrrnG7kQiIidSB9HMioqsruH7763lqyoOIuKr1EE0kyNH4LHH4IUX4Lnn4Kab7E4kInJq\nKhDNoKwMbrvNup6htBS6dbM7kYjI6WmKqQkZA9nZcNVV1vUN+fkqDiLiP9RBNJGvvrI22KushOXL\nrZVKIiL+RB1EE8jLs05ER0fDmjUqDiLin9RBeNGhQ3DvvbB0KbzzDlx9td2JRETOnDoIL1m92uoa\njh6FDRtUHETE/6mDOEtHjli7rr70Ejz/PKSl2Z1IRMQ7VCDOwrZt1vLVoCBr+WpwsN2JRES8R1NM\nZ8AY62K3q6+GCRPgww9VHESk5VEH4aHdu62i8PXXsHIlXHGF3YlERJqGOggP/Otf1m1A4+Nh1SoV\nBxFp2XTDIA8cOQKffgpXXtnsv1pE5Kx5+t6pAiEi0kp4+t6pKSYREWmQCoSIiDRIBUJERBqkAiEi\nIg1qkgKRn59PZGQkERERZGVlNXjM3XffTUREBDExMZSWlrq/HxYWRnR0NLGxsQwcOLAp4jWJwsJC\nuyM0yBdzKVPjKFPj+WIuX8zkKa8XCJfLxdSpU8nPz2fz5s3k5OSwZcuWescsWrSIzz//nLKyMl58\n8UUmT57sfs3hcFBYWEhpaSnFxcXejtdkfPUfgy/mUqbGUabG88VcvpjJU14vEMXFxYSHhxMWFkZg\nYCDp6enk5eXVO2bhwoWMGzcOgISEBA4ePMhXX33lfl1LWEVE7Of1AlFZWUloaKj7udPppLKystHH\nOBwOkpOTiYuL46WXXvJ2PBERaSzjZe+8846ZOHGi+/kbb7xhpk6dWu+YX/7yl+aTTz5xP7/hhhvM\n+vXrjTHa1M3bAAAIQElEQVTGVFZWGmOM2bt3r4mJiTHLly8/4XcA+tKXvvSlrzP48oTXN+sLCQmh\noqLC/byiogKn03nKY3bt2kVISAgA3bp1AyAoKIiRI0dSXFxMYmJivfFGU1AiIk3O61NMcXFxlJWV\nUV5eTm1tLbm5uaSmptY7JjU1lTlz5gCwZs0aOnXqRNeuXamurubQoUMAHD58mIKCAvr16+ftiCIi\n0ghe7yACAgKYNWsWKSkpuFwuMjIyiIqKIjs7G4DMzEyGDRvGokWLCA8P5/zzz+fVV18FYM+ePaT9\neEu2uro6xowZw5AhQ7wdUUREGsOjCSmbjR8/3lxyySWmb9++dkdx27lzp0lKSjK9e/c2ffr0MTNn\nzrQ7kqmpqTEDBw40MTExJioqyvzP//yP3ZHc6urqTP/+/c0vf/lLu6O4XX755aZfv36mf//+Jj4+\n3u44xhhjDhw4YEaNGmUiIyNNVFSUWb16ta15tm7davr37+/+uvDCC33i3/rjjz9uevfubfr27WtG\njx5tvv/+e7sjmWeeecb07dvX9OnTxzzzzDO25Wjo/XL//v0mOTnZREREmMGDB5sDBw6c8mf4VYFY\nvny5KSkp8akCsXv3blNaWmqMMebQoUOmV69eZvPmzTanMubw4cPGGGOOHDliEhISzIoVK2xOZHn6\n6afNrbfeaoYPH253FLewsDCzf/9+u2PUM3bsWDN79mxjjPXf8ODBgzYn+g+Xy2UuvfRSs3PnTltz\n7Nixw3Tv3t1dFG655Rbz2muv2Zrp008/NX379jU1NTWmrq7OJCcnm88//9yWLA29X95///0mKyvL\nGGPME088YR544IFT/gy/2mojMTGRiy66yO4Y9Vx66aX0798fgA4dOhAVFcWXX35pcypo3749ALW1\ntbhcLjp37mxzImsxwqJFi5g4caLPLTTwpTzffvstK1asYMKECYA1bduxY0ebU/3HkiVL6NmzZ72l\n6na48MILCQwMpLq6mrq6Oqqrq92LXeyydetWEhISaNeuHW3btuXaa6/l3XfftSVLQ++Xx1+DNm7c\nOBYsWHDKn+FXBcLXlZeXU1paSkJCgt1ROHr0KP3796dr165cd9119O7d2+5I3Hvvvfzv//4vbdr4\n1j87X7v2ZseOHQQFBTF+/HiuvPJKJk2aRHV1td2x3ObNm8ett95qdww6d+7Mb37zGy677DK6detG\np06dSE5OtjVT3759WbFiBd988w3V1dV8+OGH7Nq1y9ZMx/vqq6/o2rUrAF27dq13gXJDfOv/VD9W\nVVXFTTfdxMyZM+nQoYPdcWjTpg0bNmxg165dLF++3PbL/j/44AMuueQSYmNjferTOsDKlSspLS1l\n8eLFPPfcc6xYscLWPHV1dZSUlDBlyhRKSko4//zzeeKJJ2zNdExtbS3vv/8+N998s91R2L59O888\n8wzl5eV8+eWXVFVVMXfuXFszRUZG8sADDzBkyBCGDh1KbGysz30gOsbhcOBwOE55jG8m9zNHjhxh\n1KhR3HbbbYwYMcLuOPV07NiRG2+8kXXr1tmaY9WqVSxcuJDu3bszevRoli5dytixY23NdExwcDBQ\n/9obOzmdTpxOJ/Hx8QDcdNNNlJSU2JrpmMWLFzNgwACCgoLsjsK6deu46qqr6NKlCwEBAaSlpbFq\n1Sq7YzFhwgTWrVvHP//5Tzp16sQVPnTz+q5du7Jnzx4Adu/ezSWXXHLK41UgzpIxhoyMDHr37s09\n99xjdxwAvv76aw4ePAhATU0NH330EbGxsbZmevzxx6moqGDHjh3MmzeP66+/3n0tjJ188dqbSy+9\nlNDQUD777DPAmvPv06ePrZmOycnJYfTo0XbHAKxP62vWrKGmpgZjDEuWLPGJqdS9e/cCsHPnTt57\n7z2fmI47JjU1lddffx2A119//fQfaJvqDHpTSE9PN8HBweacc84xTqfTvPLKK3ZHMitWrDAOh8PE\nxMS4lwAuXrzY1kybNm0ysbGxJiYmxvTr1888+eSTtub5qcLCQp9ZxfTFF1+YmJgYExMTY/r06WMe\nf/xxuyMZY4zZsGGDiYuLM9HR0WbkyJE+sYqpqqrKdOnSxXz33Xd2R3HLyspyL3MdO3asqa2ttTuS\nSUxMNL179zYxMTFm6dKltuU49n4ZGBjofr/cv3+/ueGGGxq9zNVhjI9NCIuIiE/QFJOIiDRIBUJE\nRBqkAiEiIg1SgRARkQapQIh4oG3btsTGxhIdHU1aWhpVVVV2RxJpMioQIh5o3749paWlbNq0iQsv\nvNC9jb1IS6QCIXKGBg0axPbt2wFr24ehQ4cSFxfHNddcw7Zt2wC44447uOuuu4iPj+eKK67gww8/\ntDOyiEe8fsMgkdbA5XJRUFDADTfcAMCdd95JdnY24eHhFBUVMWXKFD7++GPAuqJ27dq1fP7551x3\n3XVs376dc845x874Io2iAiHigZqaGmJjY6msrCQsLIy77rqLqqoqVq9eXW8Du9raWsDaEO2WW24B\nIDw8nB49erBlyxZiYmJsyS/iCRUIEQ+cd955lJaWUlNTQ0pKCnl5eSQnJ9OpUydKS0sb9TN8dXdP\nkZ/Sv1SRM3Deeefx17/+lYceeogOHTrQvXt33nnnHcDawHHTpk3ux2+//TbGGLZv384XX3zhU7t7\nipyKCoSIB47fP79///6Eh4fz97//nblz5zJ79mz69+9P3759Wbhwofv4yy67jIEDBzJs2DCys7N1\n/kH8hjbrE2lC48ePZ/jw4aSlpdkdRcRj6iBERKRB6iBERKRB6iBERKRBKhAiItIgFQgREWmQCoSI\niDRIBUJERBqkAiEiIg36/9fGcNvjU2I2AAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x2b26690>"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 2, Page 267"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from scipy.optimize import fsolve \n",
"import math \n",
"\n",
"#INPUT\n",
"umf=0.12 #Velocity at minimum fluidization condition in cm/s\n",
"uo=40.; #Superficial gas velocity in cm/s\n",
"ub=120; #Velocity of the bubble in cm/s\n",
"D=0.7; #Diffusion coefficient of gas in cm**2/s\n",
"abkbe1=1.; #Bubble-emuslion interchange coefficient for non absorbing particles(m=0)\n",
"abkbe2=18.; #Bubble-emuslion interchange coefficient for highly absorbing particles(m=infinity)\n",
"g=980.; #Acceleration due to gravity in square cm/s**2\n",
"\n",
"#CALCULATION\n",
"#For non absorbing particles m=0,etad=0\n",
"Kbc=(ub/uo)*(abkbe1);\n",
"dbguess=2;#Guess value of db\n",
"def solver_func(db): #Function defined for solving the system\n",
" return abkbe1-(uo/ub)*(4.5*(umf/db)+5.85*(D**0.5*g**0.25)/(db**(5/4.)));#Eqn.(10.27)\n",
"\n",
"d=fsolve(solver_func,dbguess)\n",
"#For highly absorbing particles m=infinity, etad=1\n",
"M=abkbe2-(uo/ub)*Kbc;\n",
"#For intermediate condition\n",
"alpha=100.;\n",
"m=10.;\n",
"etad=1./(1+(alpha/m));#Fitted adsorption efficiency factor from Eqn.(23)\n",
"abkbe3=M*etad+(uo/ub)*Kbc;\n",
"\n",
"#OUTPUT\n",
"print 'For non absorbing particles:\\tDiameter of bubble=%fcm\\tBubble-cloud interchange coefficient=%fs**-1'%(d,Kbc);\n",
"print 'For highly absorbing partilces:\\tM=%f'%(M);\n",
"print 'For intermediate condition:\\tFitted adsorption efficiency factor:%f\\tBubble-emuslion interchange coefficient:%fs**-1'%(etad,abkbe3);\n",
"\n",
"#====================================END OF PROGRAM ======================================================"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"For non absorbing particles:\tDiameter of bubble=6.010032cm\tBubble-cloud interchange coefficient=3.000000s**-1\n",
"For highly absorbing partilces:\tM=17.000000\n",
"For intermediate condition:\tFitted adsorption efficiency factor:0.090909\tBubble-emuslion interchange coefficient:2.545455s**-1\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 3, Page 273\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"rhos=1.3; #Density of solids in g/cc\n",
"phis=0.806; #Sphericity of solids\n",
"gammab=0.001; #Ratio of volume of dispersed solids to that of bubble phase\n",
"rhog=1.18E-3; #Density of air in g/cc\n",
"Pr=0.69; #Prandtl number\n",
"myu=1.8E-4; #Viscosity of gas in g/cm s\n",
"Cpg=1.00; #Specific heat capacity of gas in J/g K\n",
"ephsilonmf=0.45; #Void fraction at minimum fluidization condition\n",
"kg=2.61E-4; #Thermal concuctivity of gas in W/cm k\n",
"dp=0.036; #Particle size in cm\n",
"umf=6.5; #Velocity at minimum fluidization condition in cm/s\n",
"ut=150.; #Terminal velocity in cm/s\n",
"db=0.4; #Equilibrium bubble size in cm\n",
"etah=1; #Efficiency of heat transfer\n",
"uo=[10.,20.,30.,40.,50.];#Superficial gas velocity in cm/s\n",
"g=980.; #Acceleration due to gravity in square cm/s**2\n",
"\n",
"#CALCULATION\n",
"Nustar=2+(((dp*ut*rhog)/myu)**0.5*Pr**(1./3));#Nusselt no. from Eqn.(25)\n",
"Hbc=4.5*(umf*rhog*Cpg/db)+5.85*((kg*rhog*Cpg)**0.5*g**0.25/db**(5./4));#Total heat interchange across the bubble-cloud boundary from Eqn.(32)\n",
"ubr=0.711*(g*db)**0.5;#Rise velocity of the bubble from Eqn.(6.7)\n",
"n=len(uo);\n",
"i=0;\n",
"x = [0,0,0,0,0]\n",
"Nubed = [0,0,0,0,0]\n",
"Rep = [0,0,0,0,0]\n",
"\n",
"while i<n:\n",
" x[i]=(uo[i]-umf)/(ubr*(1-ephsilonmf));#The term delta/(1-epshilonf) after simplification\n",
" Nubed[i]=x[i]*(gammab*Nustar*etah+(phis*dp**2/(6*kg))*Hbc);#Nusselt no. from Eqn.(36)\n",
" Rep[i]=(dp*uo[i]*rhog)/myu;#Reynolds of the particle\n",
" i=i+1;\n",
"\n",
"#OUTPUT\n",
"print 'The desired result is the relationship between Nubed and Rep which is in the form of a straight line y=mx+c'\n",
"print 'Rep',\n",
"print '\\t\\tNubed'\n",
"i=0;\n",
"while i<n:\n",
" print '%f'%Rep[i],\n",
" print '\\t%f'%Nubed[i]\n",
" i=i+1;\n",
"import matplotlib.pyplot as plt\n",
"plt.plot(Rep,Nubed);\n",
"plt.xlabel(\"Rep\");\n",
"plt.ylabel(\"Nubed\");\n",
"plt.show()\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The desired result is the relationship between Nubed and Rep which is in the form of a straight line y=mx+c\n",
"Rep \t\tNubed\n",
"2.360000 \t0.046518\n",
"4.720000 \t0.179427\n",
"7.080000 \t0.312335\n",
"9.440000 \t0.445244\n",
"11.800000 \t0.578152\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEMCAYAAADJQLEhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9c1eX9//HHYWClLivL+sihDzZIQFM0yMxZaBrmkvxV\no9YsR0o6VzZdrvWtsK0mc+VMWsPSPrYUaf0QKmVldZamggmKpSmiDMSyNM3wF3J8f/+4NtQE+eE5\nvA/nPO+3W7fOkescXr3nzuu8rtf7ui6HZVkWIiISsILsDkBEROylRCAiEuCUCEREApwSgYhIgFMi\nEBEJcEoEIiIBziuJIC8vj6ioKCIjI0lPT69zjMvlolevXnTv3p2EhARvhCEiIo3g8PQ6ArfbTdeu\nXVm+fDmhoaHEx8eTlZVFdHR07Zj9+/fTr18//vnPf+J0OtmzZw8XX3yxJ8MQEZFG8nhFUFBQQERE\nBOHh4YSEhJCcnExOTs4pYxYtWsSoUaNwOp0ASgIiIjbyeCKorKwkLCys9rnT6aSysvKUMSUlJXzz\nzTcMGDCAuLg4/v73v3s6DBERaaRgT7+hw+FocMyxY8coLCzk/fff59ChQ/Tt25drr72WyMjIJr+X\niIicrimz/h6vCEJDQ6moqKh9XlFRUTsF9F9hYWHcdNNNnHfeeXTs2JHrr7+eDRs21Pl+lmXpH8vi\n8ccftz0GX/lH10LXQtfizP80lccTQVxcHCUlJZSVlVFdXU12djZJSUmnjLn11ltZuXIlbrebQ4cO\nkZ+fT0xMjKdDERGRRvD41FBwcDAZGRkkJibidrtJSUkhOjqazMxMAFJTU4mKimLIkCH06NGDoKAg\nxo0bp0QgImITj98+6kkOh6NZZY4/crlcWm/xH7oWJ+hanKBrcUJTPzuVCERE/ExTPzu1xYSISIBT\nIhARaUUOH4ZHHoF6du9pFiUCEZFW4r334KqrYNs2GDPGc+/r8buGRETEs776Ch58EFatgueeg6FD\nPfv+qghERHzU8ePw4ovQvTuEhsKnn3o+CYAqAhERn7RpE6SmQnW1mRLq2dN7v0sVgYiIDzl8GB59\nFG64AZKTzXSQN5MAqCIQEfEZy5fDhAkQGwsbNkDnzi3ze5UIRERs9vXX8Otfw4oVkJEBt9zSsr9f\nU0MiIjaxLJg/3zSDL7sMPvus5ZMAqCIQEbHF5s1w332mJ/DPf5rpILuoIhARaUFHjsBjj8H118Nt\nt8Hq1fYmAVBFICLSYt5/3zSDe/SA9evN2gBfoEQgIuJlX38NU6eCy2WawcOG2R3RqTQ1JCLiJZYF\nL71kmsEXX2yawb6WBEAVgYiIV3z+uWkGHzwIy5ZB7952R1Q/VQQiIh505AikpUH//jBqFKxZ49tJ\nAFQRiIh4zIcfmiqgWzcoKgKn0+6IGkeJQETkLO3ZY5rBH3wAc+bArbfaHVHTaGpIRKSZLAsWLDDN\n4IsuMs3g1pYEQBWBiEizbNlipoEOHIB33oGrr7Y7ouZTRSAi0gRHj8L06dCvHwwfDvn5rTsJgCoC\nEZFGc7lMFRAVZZrBYWF2R+QZSgQiIg3Yuxd+8xtzUticOaYS8CeaGhIRqYdlwcsvm9tBzz/fHB/p\nb0kAVBGIiNRp61azQdz+/fD22xAXZ3dE3qOKQETkJEePwu9/D9ddZ/YFys/37yQAXkoEeXl5REVF\nERkZSXp6+mk/d7lcdOjQgV69etGrVy/+8Ic/eCMMEZEm+egjczbA2rVQWAiTJ0NwAMybePw/0e12\nM2nSJJYvX05oaCjx8fEkJSURHR19yrgbbriB3NxcT/96EZEm++YbeOghc1LYs8+aPoDDYXdULcfj\nFUFBQQERERGEh4cTEhJCcnIyOTk5p42zLMvTv1pEpEksC155xTSD27UzK4NHjAisJABeSASVlZWE\nnXRzrdPppLKy8pQxDoeDVatW0bNnT4YOHcqmTZs8HYaIyBmVlMDgwfD005CbC7NnmzuDApHHp4Yc\njUilvXv3pqKigrZt27Js2TKGDx/O1q1b6xyblpZW+zghIYGEhAQPRSoigai6Gv70J/jLX+B3v4P7\n72/9fQCXy4XL5Wr26x2Wh+do1qxZQ1paGnl5eQD88Y9/JCgoiGnTptX7mi5durBu3TouuuiiU4Nz\nODSFJCIes2IFpKbCj35kjoz83/+1OyLvaOpnp8enhuLi4igpKaGsrIzq6mqys7NJSko6Zczu3btr\ngywoKMCyrNOSgIiIp3zzDYwbB3fcYW4Nzc313yTQHB4viIKDg8nIyCAxMRG3201KSgrR0dFkZmYC\nkJqaymuvvcbzzz9PcHAwbdu2ZfHixZ4OQ0QEy4JFi8xZAaNHm5XBgdoHOBOPTw15kqaGRKS5SkvN\nyuCvvoK5c+Gaa+yOqOXYPjUkImKn6mp46ino0wcSE+GTTwIrCTRHK++Vi4icsHKlaQaHh5sEEB5u\nd0StgxKBiLR6+/bBb39rNoebPRtGjQq8RWFnQ1NDItJqWRZkZZmVwcHBphk8erSSQFOpIhCRVmn7\ndpg4Eb74At54A6691u6IWi9VBCLSqhw7BjNmmAbwjTeaXoCSwNlRRSAircaqVaYZHBamZrAnKRGI\niM/btw8efhjeesvsEaQ+gGdpakhEfJZlweLFphkcFGS2ib7tNiUBT1NFICI+accO0wyurITXX4e+\nfe2OyH+pIhARn3LsGKSnQ3w8JCTAunVKAt6mikBEfMbq1aYZ3LkzFBTAFVfYHVFgUCIQEdvt328O\niVmyBGbNgttvVx+gJWlqSERsY1nw6qumGXz8uFkZ/NOfKgm0NFUEImKLsjL45S+hvBz+8Q+47jq7\nIwpcqghEpEUdOwYzZ0JcHPz4x1BYqCRgN1UEItJi1qwxzeDLLlMz2JcoEYiI1337rWkGv/kmPPOM\n+gC+RlNDIuI1lgWvvWaawTU1ZmVwcrKSgK9RRSAiXlFWBpMmmRXC2dnQr5/dEUl9VBGIiEfV1MCf\n/2yawdddB0VFSgK+ThWBiHhMQQGMHw+dOpnGcESE3RFJYygRiMhZO3AAHnnE9AOefhruuEN9gNZE\nU0Mi0myWZXYGjYmBo0dNM/jOO5UEWhtVBCLSLP/+t2kGb99uzgz48Y/tjkiaSxWBiDRJTY2Z/rn6\nanNWcFGRkkBrp4pARBpt7VrTDO7YUc1gf6KKQEQadOAA3H8/DBsGU6bAe+8pCfgTJQIRqZdlmW0h\nunWDQ4dMM/iuu9QM9jdeSQR5eXlERUURGRlJenp6vePWrl1LcHAwb7zxhjfCEJGzUF4Ow4ebPYIW\nLoQXXzRTQuJ/PJ4I3G43kyZNIi8vj02bNpGVlcXmzZvrHDdt2jSGDBmCZVmeDkNEmqmmxpwS1ru3\nWR28fj1cf73dUYk3ebxZXFBQQEREBOHh4QAkJyeTk5NDdHT0KePmzJnD6NGjWbt2radDEJFm+uQT\ns030BRfAqlVw5ZV2RyQtweOJoLKykrCwsNrnTqeT/Pz808bk5OTwwQcfsHbtWhxnmHBMS0urfZyQ\nkEBCQoKnQxYJeN99B//v/5nN4WbOVB+gtXG5XLhcrma/3uOJ4Ewf6v81efJkZsyYgcPhwLKsM04N\nnZwIRMTzliyBX/0KbrrJNIPVB2h9vv8lefr06U16vccTQWhoKBUVFbXPKyoqcDqdp4xZt24dycnJ\nAOzZs4dly5YREhJCUlKSp8MRkXpUVJgE8Pnn8MorcMMNdkckdvF4szguLo6SkhLKysqorq4mOzv7\ntA/47du3s2PHDnbs2MHo0aN5/vnnlQREWojbDbNnQ69epiG8YYOSQKDzeEUQHBxMRkYGiYmJuN1u\nUlJSiI6OJjMzE4DU1FRP/0oRaaR160wz+Pzz4eOPoWtXuyMSX+CwfPjezf/2EETk7FRVwaOPwqJF\n8Kc/wZgxagb7s6Z+dmplsYify8kx20Tv32+awXffrSQgp9KmcyJ+audO0wzetAkWLIABA+yOSHyV\nKgIRP+N2w7PPQmws9OxpmsFKAnImqghE/EhhoWkGt2sHK1dCVJTdEUlroIpAxA9UVZntoW++GX75\nS/jwQyUBaTwlApFW7q23zDbRe/fCp5/CPfeoGSxNo6khkVaqstIcFrNxI7z0EgwcaHdE0lqpIhBp\nZdxuyMgwzeDu3aG4WElAzo4qApFWZP16c2bweefBRx/B93Z3F2kWVQQirUBVFUydanYIve8+0wxW\nEhBPUSIQ8XFvv22mgL76yjSDf/ELCNL/c8WDNDUk4qN27YIHHjDTQS++CIMG2R2R+Ct9rxDxMW43\nPPecWRUcFWWawUoC4k2qCER8yIYNphncpg38619mszgRb1NFIOIDDh6Ehx6CwYNNIlASkJakRCBi\ns6VLTTN41y7TDE5JUTNYWpamhkRssmsXTJ5sNoqbO9dUAyJ2qDcRDBs2rPbx90+7cTgc5Obmejcy\nET/ldkNmJjz+uNkpdMECs0BMxC71JoIpU6YA8Oabb/Lll19y1113YVkWWVlZXHrppS0WoIg/KS42\nPYDgYHC5zGZxInZr8Mziq6++mnXr1jX4Z96gM4vFXxw8CE88YTaHe/JJ9QHEuzx+ZvGhQ4coLS2t\nfb59+3YOHTrUvOhEAtCyZaYZvHOn2Sl03DglAfEtDTaLZ82axYABA+jSpQsAZWVlzJ071+uBibR2\nX3wBDz4Ia9eansBNN9kdkUjdGpwaAjhy5AhbtmwBICoqinPOOcfrgYGmhqR1On7c3AX06KPm2/+j\nj6oZLC2rqZ+dDVYEBw8e5JlnnqG8vJwXXniBkpIStmzZwi233HJWgYr4o40bzZ1ADofZIbR7d7sj\nEmlYgzOVY8eOpU2bNqxatQqAzp0788gjj3g9MJHW5NAh+O1vzQEx99wDK1YoCUjr0WAiKC0tZdq0\nabRp0waAdu3aeT0okdYkL8986P/736YiGD9ezWBpXRqcGjrnnHM4fPhw7fPS0tIW6xGI+LIvvzTN\n4Px8+OtfYcgQuyMSaZ4Gv7ekpaUxZMgQdu7cyZ133snAgQNJT09vidhEfNLx4+YuoKuugvBwsz+Q\nkoC0Zo26a2jPnj3k5+djWRbXXnstF1988RnH5+XlMXnyZNxuN/feey/Tpk075ec5OTk89thjBAUF\nERQUxMyZMxlYx+nbumtIfM2nn5pm8H/vDLrqKrsjEjldUz87G0wElmXxxhtvsHLlShwOB/3792fE\niBH1jne73XTt2pXly5cTGhpKfHw8WVlZRJ90wOrBgwdrew0bN25kxIgRbNu27az/Y0S85fBh+P3v\n4YUXzL/VBxBf5vGVxRMnTiQzM5MePXrQvXt3MjMzmThxYr3jCwoKiIiIIDw8nJCQEJKTk8nJyTll\nzMkN56qqqgYrDBE7vfuuaQZv3272CrrvPiUB8S8NNos//PBDNm3aRNB//ubfc889xJzhxIzKykrC\nwsJqnzudTvLz808bt2TJEh5++GG++OIL3n333XrfLy0trfZxQkICCQkJDYUs4hG7d8Ovfw2rVplm\n8M032x2RSN1cLhcul6vZr28wEURERFBeXk54eDgA5eXlRERE1Dve4XA06hcPHz6c4cOHs2LFCn7+\n85/Xrlz+vpMTgUhLOH4c5s2DRx6BsWPhs8+gbVu7oxKp3/e/JE+fPr1Jr2/wPILvvvuO6Ohorrnm\nGhwOBwUFBcTHx9f7hqGhoVRUVNQ+r6iowOl01ju+f//+1NTUsHfvXjp27Nik4EU87bPPTDO4pgaW\nL4cePeyOSMT7GjyPoC5n+tYfFxdHSUkJZWVldO7cmezsbLKysk4ZU1payhVXXIHD4aCwsBBASUBs\ndfgw/OEP5k6gJ54wzeAf/MDuqERaRr2JoLlz8cHBwWRkZJCYmIjb7SYlJYXo6GgyMzMBSE1N5fXX\nX+fll18mJCSE9u3bs3jx4mb9LhFPeO89mDABeveGDRugc2e7IxJpWQ3ePtq+ffvaCqC6uppjx47R\nvn17Dhw44P3gdPuoeNFXX5lm8MqV8Nxz8JOf2B2RiGd4fPfRqqqq2sfHjx8nNzeXNWvWNC86ER9w\n/DjMnw+/+x3cfbfpC2gLLQlkjVpZ/H2xsbGsX7/eG/GcQhWBeNqmTWYdwNGjZpuI2Fi7IxLxPI9X\nBK+//nrt4+PHj7Nu3TrO0ykb0socOWLOCv7b3yAtzSQDNYNFjAYTwVtvvVXbIwgODiY8PPy0lcIi\nvuz9980Hf2ysmsEidWnW1FBL0dSQnI2vv4YpU+CjjyAjA3SongQKj00N1bcy7b/VwWOPPdbE0ERa\nhmXBSy/Bww/Dz39udgxt397uqER8V72JoF27dqctHDt48CDz5s1jz549SgTikzZvNtNAhw+bk8N6\n9bI7IhHf16ipoQMHDvDss88yb948br/9dqZMmUKnTp28H5ymhqSRjhyBp54ym8M9/jhMnKhmsAQu\nj941tHfvXmbNmsXChQsZM2YMhYWFXHjhhWcdpIgnffCBqQKuugrWr4czbG0lInWoNxFMnTqVN998\nk/Hjx1NcXMwPf/jDloxLpEFffw1Tp4LLBXPmQFKS3RGJtE71Tg0FBQXRpk0bQkJCTn+Rw6EtJsQ2\nlgULFsC0afCzn5lN4tQMFjnBY1NDx48f90hAIp60ZYvZJrqqCpYtMxvFicjZ0YF70iocPWpWBPfr\nByNHQn6+koCIpzS4sljEbi6XqQK6dVMzWMQblAjEZ+3ZY5rBH3xgmsG33mp3RCL+SVND4nP+2wzu\n1g0uvNBsE60kIOI9qgjEp2zZYtYEHDgAS5fC1VfbHZGI/1NFID7h6FFzG2i/fubbf36+koBIS1FF\nILb7179MM7hrVygqgrAwuyMSCSxKBGKbvXvhN78xh8fPmQPDh9sdkUhg0tSQtDjLgr//3TSDzz/f\nHB+pJCBiH1UE0qJKSkwzeN8+ePttiIuzOyIRUUUgLeLoUfj976FvX3NSWEGBkoCIr1BFIF730Uem\nGRwZCYWFcPnldkckIidTIhCv+eYbeOghc1LYs8/CiBHwvUPvRMQHaGpIPM6y4JVXICYG2rY1zeCR\nI5UERHyVKgLxqJISmDDB3BqamwvXXGN3RCLSEFUE4hHV1fDkk6YZfPPNsHatkoBIa+G1RJCXl0dU\nVBSRkZGkp6ef9vOFCxfSs2dPevToQb9+/SguLvZWKOJlK1dCbCysXg3r1sGUKRCsWlOk1aj3qMqz\n4Xa76dq1K8uXLyc0NJT4+HiysrKIjo6uHbN69WpiYmLo0KEDeXl5pKWlsWbNmlOD01GVPu2bb8xx\nkcuWwezZ6gOI+IqmfnZ6pSIoKCggIiKC8PBwQkJCSE5OJicn55Qxffv2pUOHDgD06dOHnTt3eiMU\n8QLLgkWLzMrgc88120SPGqUkINJaeaWAr6ysJOykncOcTif5+fn1jp83bx5Dhw6t82dpaWm1jxMS\nEkhISPBUmNIMpaWmGbx7NyxZAn362B2RiLhcLlwuV7Nf75VE4GjCV8MPP/yQ+fPn8/HHH9f585MT\ngdinuhr+/Gd45hn47W/hgQcgJMTuqEQETv+SPH369Ca93iuJIDQ0lIqKitrnFRUVOOs4aLa4uJhx\n48aRl5fHhRde6I1QxANWrjQrg8PD4ZNPzL9FxH94pUcQFxdHSUkJZWVlVFdXk52dTVJS0iljysvL\nGTlyJK+88goRERHeCEPO0r59JgH89KeQlmY2iVMSEPE/XqkIgoODycjIIDExEbfbTUpKCtHR0WRm\nZgKQmprKE088wb59+5gwYQIAISEhFBQUeCMcaSLLgsWLzW2gI0aYlcH/6euLiB/yyu2jnqLbR1ve\n9u0wcSLs2gVz58K119odkYg0lU/cPiqtz7FjMGOGWQ08cKBZGKYkIBIYtP5TWLXK9AKcTrM1RJcu\ndkckIi1JiSCA7d8PDz9sNod75hm4/XYtChMJRJoaCkCWBdnZZptoh8OsDP7pT5UERAKVKoIAs2OH\naQbv3Amvv252CxWRwKaKIEAcOwbp6RAfDwkJ5shIJQERAVUEAWH1atMM7tzZHBp/xRV2RyQivkSJ\nwI/t3w+/+53ZHO6ZZ9QHEJG6aWrID1kWvPqq2Sb6+HHTDE5OVhIQkbqpIvAzZWXwy1/Cv/9tkkG/\nfnZHJCK+ThWBnzh2DGbOhLg4+PGPTTNYSUBEGkMVgR/Iz4fx4+Gyy8zjH/3I7ohEpDVRImjFvv3W\nNIPfeMM0g9UHEJHm0NRQK2RZ8NprZmXwsWNmm+g77lASEJHmUUXQypSVwaRJZoVwdrbpB4iInA1V\nBK1ETY05MzguDq67DoqKlARExDNUEbQCBQWmGXzJJbBmDehkTxHxJFUEPuzAAfjVr+DWW+E3v4F3\n31USEBHPUyLwQZZldgaNiYEjR8zK4J/9TM1gEfEOTQ35mPJy0wzetg2ysqB/f7sjEhF/p4rAR9TU\nmLUAvXubc4PXr1cSEJGWoYrAB6xda5rBHTuaLaMjI+2OSEQCiSoCGx04APffD8OGwZQp8N57SgIi\n0vKUCGxgWfDmm2ab6IMHTTP4rrvUDBYRe2hqqIWVl5tbQrduhVdegRtusDsiEQl0qghaSE0NzJpl\nmsFxcaYZrCQgIr5AFUELWLfONIM7dIBVq+DKK+2OSETkBFUEXvTddzB5MvzkJ/DAA/D++0oCIuJ7\nvJYI8vLyiIqKIjIykvT09NN+/vnnn9O3b1/OPfdcnn76aW+FYZucHNMMPnAAPv0UxoxRM1hEfJNX\npobcbjeTJk1i+fLlhIaGEh8fT1JSEtHR0bVjOnbsyJw5c1iyZIk3QrBNRYW5JXTzZnj5ZUhIsDsi\nEZEz80pFUFBQQEREBOHh4YSEhJCcnExOTs4pYy655BLi4uIICQnxRggtzu2G2bOhVy+IjYUNG5QE\nRKR18EpFUFlZSVhYWO1zp9NJfn6+N36VT1i3DlJT4Yc/hI8/hq5d7Y5IRKTxvJIIHB6cDE9LS6t9\nnJCQQIIPfc2uqoJHH4VFi+BPf1IfQETs4XK5cLlczX69VxJBaGgoFRUVtc8rKipwOp3Neq+TE4Ev\nyc01u4QOHGhWBl98sd0RiUig+v6X5OnTpzfp9V5JBHFxcZSUlFBWVkbnzp3Jzs4mKyurzrGWZXkj\nBK/ZudM0gz/9FBYsgAED7I5IROTseCURBAcHk5GRQWJiIm63m5SUFKKjo8nMzAQgNTWVL7/8kvj4\neA4cOEBQUBCzZ89m06ZNtG/f3hshnTW3G557Dp54wlQCixbBuefaHZWIyNlzWD78ldzhcPhExVBU\nZFYGt2sHf/sbREXZHZGISP2a+tmplcVnUFVltoceMgQmToQPP1QSEBH/o0RQj7feMiuD9+wx/YCx\nY3VHkIj4J2069z2VlaYZvHEjvPSSuStIRMSfqSL4D7cbMjLMquBu3aC4WElARAKDKgLM2QDjx5u7\ngD76CE7aEklExO8FdEVw8CBMnQo33WS2iHC5lAREJPAEbCJ45x0zBbR7t2kGp6RAUMBeDREJZAE3\nNbRrlzkkZv16ePFFGDTI7ohEROwVMN+B3W7461+hZ0+zFqC4WElARAQCpCLYsMH0AEJC4F//gpgY\nuyMSEfEdfl0RHDwIDz0EgwfDvfcqCYiI1MVvE8HSpdC9u+kJbNxoEoGawSIip/O7qaEvvjDN4MJC\nmDvXVAMiIlI/v/mOfPw4PP889OgBkZGmClASEBFpmN9UBH/+M+TkmEVh3brZHY2ISOvhN+cRHD4M\n55yjPoCISFPPI/CbRCAiIoYOphERkSZRIhARCXBKBCIiAU6JQEQkwCkRiIgEOCUCEZEAp0QgIhLg\nlAhERAKcEoGISIBTIhARCXBKBCIiAc4riSAvL4+oqCgiIyNJT0+vc8z9999PZGQkPXv2pKioyBth\n+BWXy2V3CD5D1+IEXYsTdC2az+OJwO12M2nSJPLy8ti0aRNZWVls3rz5lDFLly5l27ZtlJSUMHfu\nXCZMmODpMPyO/pKfoGtxgq7FCboWzefxRFBQUEBERATh4eGEhISQnJxMTk7OKWNyc3O5++67AejT\npw/79+9n9+7dng5FREQaweOJoLKykrCwsNrnTqeTysrKBsfs3LnT06GIiEgjePyEMofD0ahx398r\nu77XNfb9AsH06dPtDsFn6FqcoGtxgq5F83g8EYSGhlJRUVH7vKKiAqfTecYxO3fuJDQ09LT30qE0\nIiLe5/Gpobi4OEpKSigrK6O6uprs7GySkpJOGZOUlMTLL78MwJo1a7jgggu49NJLPR2KiIg0gscr\nguDgYDIyMkhMTMTtdpOSkkJ0dDSZmZkApKamMnToUJYuXUpERATt2rXjpZde8nQYIiLSWJYPKi8v\ntxISEqyYmBirW7du1uzZs+0OyVY1NTVWbGysdcstt9gdiq327dtnjRo1yoqKirKio6Ot1atX2x2S\nbZ566ikrJibG6t69u3XHHXdYR44csTukFjN27FirU6dOVvfu3Wv/bO/evdagQYOsyMhIa/Dgwda+\nfftsjLDl1HUtpk6dakVFRVk9evSwRowYYe3fv7/B9/HJlcUhISHMmjWLzz77jDVr1vDcc8+dthYh\nkMyePZuYmJiAb5w/8MADDB06lM2bN1NcXEx0dLTdIdmirKyMF154gcLCQjZu3Ijb7Wbx4sV2h9Vi\nxo4dS15e3il/NmPGDAYPHszWrVu58cYbmTFjhk3Rtay6rsVNN93EZ599xoYNG7jyyiv54x//2OD7\n+GQiuOyyy4iNjQWgffv2REdHs2vXLpujssfOnTtZunQp9957b0A3z7/99ltWrFjBL37xC8BMQXbo\n0MHmqOxx/vnnExISwqFDh6ipqeHQoUN13mzhr/r378+FF154yp+dvDbp7rvvZsmSJXaE1uLquhaD\nBw8mKMh8tPfp06dRt+b7ZCI4WVlZGUVFRfTp08fuUGzx4IMPMnPmzNr/YQPVjh07uOSSSxg7diy9\ne/dm3LhxHDp0yO6wbHHRRRcxZcoULr/8cjp37swFF1zAoEGD7A7LVrt376694eTSSy/VAtX/mD9/\nPkOHDm1wnE9/ulRVVTF69Ghmz55N+/bt7Q6nxb399tt06tSJXr16BXQ1AFBTU0NhYSETJ06ksLCQ\ndu3aBUwrLCSWAAADm0lEQVT5/32lpaX85S9/oaysjF27dlFVVcXChQvtDstnOByOgJ9GBXjyySdp\n06YNd955Z4NjfTYRHDt2jFGjRnHXXXcxfPhwu8OxxapVq8jNzaVLly7ccccdfPDBB4wZM8busGzh\ndDpxOp3Ex8cDMHr0aAoLC22Oyh6ffPIJ1113HR07diQ4OJiRI0eyatUqu8Oy1aWXXsqXX34JwBdf\nfEGnTp1sjshe//d//8fSpUsb/QXBJxOBZVmkpKQQExPD5MmT7Q7HNk899RQVFRXs2LGDxYsXM3Dg\nwNr1F4HmsssuIywsjK1btwKwfPlyunXrZnNU9oiKimLNmjUcPnwYy7JYvnw5MTExdodlq6SkJBYs\nWADAggULAvbLI5jdn2fOnElOTg7nnntu417krduazsaKFSssh8Nh9ezZ04qNjbViY2OtZcuW2R2W\nrVwulzVs2DC7w7DV+vXrrbi4uCbdFuev0tPTa28fHTNmjFVdXW13SC0mOTnZ+p//+R8rJCTEcjqd\n1vz58629e/daN954Y8DdPvr9azFv3jwrIiLCuvzyy2s/OydMmNDg+zgsK8Ann0VEApxPTg2JiEjL\nUSIQEQlwSgQiIgFOiUBEJMApEYjU4Qc/+AG9evWiR48ejBw5kqqqKrtDEvEaJQKROrRt25aioiKK\ni4s5//zza7dRF/FHSgQiDejbty+lpaWA2d7h5ptvJi4ujuuvv54tW7YAcM8993DfffcRHx9P165d\neeedd+wMWaRJPH4wjYg/cbvdvPvuu9x4440AjB8/nszMTCIiIsjPz2fixIm8//77AJSXl7N27Vq2\nbdvGgAEDKC0tpU2bNnaGL9IoSgQidTh8+DC9evWisrKS8PBw7rvvPqqqqli9ejW33XZb7bjq6mrA\nbHR2++23AxAREcEVV1zB5s2b6dmzpy3xizSFEoFIHc477zyKioo4fPgwiYmJ5OTkMGjQIC644AKK\niooa9R6BvnW4tB76mypyBueddx7PPvssjzzyCO3bt6dLly689tprgNkcsbi4uPbxP/7xDyzLorS0\nlO3bt9O1a1c7QxdpNCUCkTqcvJ99bGwsERERvPrqqyxcuJB58+YRGxtL9+7dyc3NrR1/+eWXc801\n1zB06FAyMzPVH5BWQ5vOiXjA2LFjGTZsGCNHjrQ7FJEmU0UgIhLgVBGIiAQ4VQQiIgFOiUBEJMAp\nEYiIBDglAhGRAKdEICIS4JQIREQC3P8HJOZBYJAptYQAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x269c250>"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 4, Page 274\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"import math\n",
"\n",
"#Variable declaration\n",
"rhog=1.2; #Density of air in kg/m**3\n",
"myu=1.8E-5; #Viscosity of gas in kg/m s\n",
"kg=2.6E-2; #Thermal concuctivity of gas in W/m k\n",
"dp=1E-4; #Particle size in m\n",
"rhos=8920; #Density of solids in kg/m**3\n",
"Cps=390; #Specific heat capacity of the solid in J/kg K\n",
"ephsilonf=0.5; #Void fraction of the fluidized bed\n",
"umf=0.1; #Velocity at minimum fluidization condition in m/s\n",
"uo=0.1; #Superficial gas velocity in m/s\n",
"pi=3.14\n",
"\n",
"#CALCULATION\n",
"to=0; #Initial temperature of the bed\n",
"T=100; #Temperature of the bed\n",
"t=0.99*T; #Particle temperature i.e. when it approaches 1% of the bed temperature\n",
"mp=(pi/6)*dp**3*rhos; #Mass of the particle\n",
"A=pi*dp**2; #Surface area of the particle\n",
"Rep=(dp*uo*rhog)/myu; #Reynold's no. of the particle\n",
"Nubed=0.0178; #Nusselt no. from Fig.(6)\n",
"hbed1=(Nubed*kg)/dp; #Heat transfer coefficient of the bed\n",
"t1=(mp*Cps/(hbed1*A))*math.log((T-to)/(T-t));#Time needed for the particle approach 1 percentage of the bed temperature in case(a)\n",
"hbed2=140*hbed1;#Since from Fig.(6) Nup is 140 times Nubed\n",
"t2=(mp*Cps/(hbed2*A))*math.log((T-to)/(T-t));#Time needed for the particle approach 1 percentage of the bed temperature in case(b)\n",
"\n",
"#OUTPUT\n",
"print 'Case(a):Using the whole bed coefficient from Fig.(6)'\n",
"print '\\tTime needed for the particle approach 1 percentage of the bed temperature is %.0fs'%t1\n",
"print 'Case(b):Uisng the single-particle coefficient of Eqn.(25),also shown in Fig.(6)'\n",
"print '\\tTime needed for the particle approach 1 percentage of the bed temperature is %.2fs'%t2"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Case(a):Using the whole bed coefficient from Fig.(6)\n",
"\tTime needed for the particle approach 1 percentage of the bed temperature is 58s\n",
"Case(b):Uisng the single-particle coefficient of Eqn.(25),also shown in Fig.(6)\n",
"\tTime needed for the particle approach 1 percentage of the bed temperature is 0.41s\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|