1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
{
"metadata": {
"name": "",
"signature": "sha256:540962ba0b5999b583f0620c9dca124d46f25fe569649c6c842d96cfa42351a3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3: Static Forces on Surfaces. Buoyancy"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.1, Page 65"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
" #Initializing the variables\n",
"a = 2.7; #Upper edge\n",
"b = 1.2 ; #Lower edge\n",
"width = 1.5; #Width of trapezoidal plate\n",
"h = 1.1; #Height of water column above surface\n",
"rho = 1000;\n",
"g = 9.81 #Acceleration due to gravity\n",
"phi = 90 #Angle between wall and surface\n",
"\n",
" #Calculations\n",
"A = 0.5*(a+b)*width; #Area of Trapezoidal Plate\n",
"y = (2*(0.5*width*0.75)*0.5 + (1.2*width)*0.75)/A;\n",
"z = y+h; #Depth of center of pressure\n",
"R = rho*g*A*z #Resultant force\n",
"\n",
"I0 = 1.2*1.5**3/12 +1.2*1.5*1.85**2 + 1.5*1.5**3/36 + 1.5*0.75*1.6**2 #Second moment of area\n",
"D = (math.sin(math.degrees(phi)))**2*I0/(A*z); #depth of center of pressure\n",
"M = R*(1.8533-1.1); #Moment about hinge\n",
"print \"Moment about the hinge line (kN/m):\",round(M/1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Moment about the hinge line (kN/m): 38.0\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.2, Page 67"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
" #Initializing the variables\n",
"w = 1.8; #Width of plate\n",
"h1 = 5; #Height of plate and water in upstream\n",
"h2 = 1.5; #Height of water in downstream\n",
"rho = 1000;\n",
"g = 9.81 ; #Acceleration due to gravity\n",
"\n",
" #Calculations\n",
"def waterForce(area,meanHeight):\n",
" F = rho * g * area * meanHeight;\n",
" return F\n",
"\n",
"P = waterForce(w*h1,h1/2)-waterForce(w*h2,h2/2);# Resultant force on gate \n",
"x = (waterForce(w*h1,h1/2)*(h1/3) - waterForce(w*h2,h2/2)*(h2/3))/P;# point of action of p from bottom\n",
"R = P/(2*math.sin(math.radians(20))); # Total Reaction force\n",
"Rt = 1.18*R/4.8; #Reaction on Top\n",
"Rb = R - Rt ; #Reaction at bottom\n",
"\n",
"print \"Reaction at top (kN):\",round(Rt/1000,1)\n",
"print \"Reaction at bottom (kN):\",round(Rb/1000,2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Reaction at top (kN): 72.2\n",
"Reaction at bottom (kN): 221.45\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.3, Page 70"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"\n",
"\n",
" #Initializing the variables\n",
"D = 1.8; #Depth of tank\n",
"h = 1.2; #Depth of water\n",
"l = 3; #Length of wall of tank\n",
"p = 35000; #Air pressure\n",
"rho = 10**3; #Density of water\n",
"g = 9.81; #Acceleration due to gravity\n",
"\n",
"\n",
" #Calculations\n",
"Ra = p*D*l; #Force due to air\n",
"Rw = .5*(rho*g*h)*h*l; #Force due to water\n",
"R = Ra + Rw; # Resultant force\n",
"x = (Ra*0.9+Rw*0.4)/R; # Height of center of pressure from base\n",
"print \"Resultant force on the wall (kN) :\",round(R/1000,2)\n",
"print \"Height of the centre of pressure above the base (m) :\",round(x,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Resultant force on the wall (kN) : 210.19\n",
"Height of the centre of pressure above the base (m) : 0.85\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.4, Page 72"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
" \n",
"\n",
" #Initializing the variables\n",
"R = 6; # Radius of arc\n",
"h = 2*R*math.sin(math.radians(30)); #Depth of water\n",
"rho = 10**3; #Density of water\n",
"g = 9.81; #Acceleration due to gravity\n",
"\n",
" #Calculations\n",
"Rh = (rho*g*h**2)/2; # Resultant horizontal force per unit length\n",
"Rv = rho*g*((60/360)*math.pi*R**2 -R*math.sin(math.radians(30))*R*math.cos(math.radians(30)));# Resultant vertical force per unit length\n",
"R = (Rh**2+Rv**2)**0.5; # Resultant force on gate\n",
"theta = 180/math.pi*math.atan(Rv/Rh); #Angle between resultant force and horizontal\n",
"\n",
"print \"Magnitute of resultant force (kN/m) :\",round(R/1000,2)\n",
"print \"Direction of resultant force to the horizontal(Degrees):\",round(theta,2)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Magnitute of resultant force (kN/m) : 179.45\n",
"Direction of resultant force to the horizontal(Degrees): 10.27\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.5, Page 75"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
" #Initializing the variables\n",
"B = 6; # Width of pontoon\n",
"L = 12; #Length of pontoon\n",
"D = 1.5; #Draught of pontoon\n",
"Dmax = 2; #Maximum permissible draught\n",
"rhoW = 1000; #Density of fresh water\n",
"rhoS = 1025; #Density of sea water\n",
"g = 9.81; #Acceleration due to gravity\n",
"\n",
" #Calculations\n",
"def Weight(D):\n",
" W = rhoW*g*B*L*D;\n",
" return W\n",
"\n",
"W = Weight(D); # Weight of pontoon in fresh water = weight of water displaced\n",
"Ds = W/(rhoS*g*B*L); #Draught in sea water\n",
"L = Weight(Dmax) - Weight(D); # maximum load that can be supported\n",
"\n",
"print \"Weight of pontoon (kN) :\",round(W/1000,1)\n",
"print \"Draught in sea (m) :\",round(Ds,2)\n",
"print \"Load (kN) :\",round(L/1000,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Weight of pontoon (kN) : 1059.5\n",
"Draught in sea (m) : 1.46\n",
"Load (kN) : 353.16\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.6, Page 80"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"\n",
"\n",
" #Initializing the variables\n",
"D = 1.8; # Diameter of buoy\n",
"H = 1.2; #Height of buoy\n",
"W = 10*10**3; #Weight of buoy\n",
"L = 2*10**3; #Load\n",
"G = 0.45; # Center of gravity\n",
"rho = 1025; #Density of sea water\n",
"g = 9.81; #Acceleration due to gravity\n",
"\n",
" #Calculations\n",
"Z = 4*(W+L)/(rho*g*math.pi*D**2); # Depth of Immersion\n",
"BG = (math.pi*D**4/64)/(math.pi*D**2*Z/4);\n",
"Z = 0.5*Z +BG; # Position of combined center of gravity\n",
"Z1 = ((W+L)*Z-0.45*W)/L; #Maximum height of load above bottom\n",
"\n",
"print \"Maximum height of center of gravity above bottom (m) :\",round(Z1,3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum height of center of gravity above bottom (m) : 1.748\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3.7, Page 83"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
" #Initializing the variables\n",
"l = 20; # Length of barage\n",
"b = 6; #Width of barage\n",
"r = 3; #Radius of circular top of barage\n",
"W = 200*10**3; #Weight of empty barage\n",
"d1 = 0.8; # Depth of water in 1st half\n",
"d2 = 1; # Depth of water in 2nd half\n",
"rho = 1000; #Density of water\n",
"R = 0.8; #Relative density of liquid\n",
"g = 9.81; #Acceleration due to gravity\n",
"ZG = 0.45; # Center of gravity of barage\n",
"\n",
" #Calculations\n",
"I00 = l*b**3/12 +math.pi*b**4/128;\n",
"ICC = l*(.5*b)**3/12;\n",
"L = d1*rho*g*l*b/2*(d1+d2); # Weight of liquid load\n",
"W = L + W; #Total weight\n",
"A = l*b +math.pi*r**2/2; # Area of plane of waterline\n",
"V = W/(rho*g); # Volume of vessel submerged\n",
"D = V/A ; #Depth submerged\n",
"ZB = .5*D; #Height of center of buoyancy\n",
"NM = ZB-ZG +(1/V)*(I00-R*2*ICC); # Effective metacentric height\n",
"P = R*rho*g*l*b/2*(d2-d1); #overturning moment \n",
"theta = math.atan(P*1.5/(W*NM))*180/math.pi; #Angle of roll\n",
"# converting into degrees and minutes\n",
"thetaD=round(theta-1)\n",
"thetaM=(theta-thetaD)*60/100\n",
"print \"Angle of roll is\",thetaD,\"degrees\",round(thetaM,2),\"minutes\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Angle of roll is 2.0 degrees 0.37 minutes\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|