1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
{
"metadata": {
"name": "",
"signature": "sha256:03b40b6d5c44ff714aac13480905f296c46afa917e2740a687e8aa66bb21b428"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 10: Laminar and Turbulent Flows in Bounded System"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.1, Page 329"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"import sympy\n",
"from sympy import symbols,diff,solve\n",
"\n",
" #Initializing the variables\n",
"mu = 0.9;\n",
"rho = 1260;\n",
"g = 9.81;\n",
"x = 45; #theta in degrees\n",
"P1 = 250 * 10**3;\n",
"P2 = 80* 10**3;\n",
"Z1 = 1;\n",
"Z2 = 0; # datum\n",
"U = -1.5;\n",
"Y = 0.01;\n",
"\n",
" #Calculations\n",
"gradP1 = P1+ rho*g*Z1;\n",
"gradP2 = P2+ rho*g*Z2;\n",
"DPstar = (gradP1-gradP2)*math.sin(math.radians(x))/(Z1-Z2);\n",
"A = U/Y; # Coefficient U/Y for equation 10.6\n",
"B = DPstar/(2*mu) # Coefficient dp*/dx X(1/2mu) for equation 10.6\n",
"y = symbols('y')\n",
"v = round((A + B*Y),1)*y -round(B)*y**2\n",
"duBYdy = diff(v,y);\n",
"tau = 0.9*duBYdy;\n",
"stagPnts = solve(duBYdy,y)\n",
"ymax=stagPnts[0] #value of y where derivative vanishes.;\n",
"umax = (A + B*Y)*ymax + B*ymax**2; # Check the value there is slight mistake in books answer\n",
"def u(y):\n",
" z = (A + B*Y)*y -B*y**2;\n",
" return diff(z,y)\n",
"def dif(y):\n",
" return round((A + B*Y)) -2*round(B)*y\n",
"\n",
"taumax=abs(mu*dif(Y))\n",
"\n",
"print \"velocity distribution :\",v\n",
"print \"shear stress distribution :\",mu*dif(y)\n",
"print \"maximum flow velocity (m/s) :\",round(umax,2)\n",
"print \"Maximum Shear Stress (kN/m^2):\",(round(taumax)/1000)\n",
" \n",
"\n",
"print "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"velocity distribution : -71638.0*y**2 + 566.4*y\n",
"shear stress distribution : -128948.4*y + 509.4\n",
"maximum flow velocity (m/s) : 3.36\n",
"Maximum Shear Stress (kN/m^2): 0.78\n",
"\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.2, Page 335"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"\n",
" #Initializing the variables\n",
"mu = 0.9;\n",
"rho = 1260;\n",
"d = 0.01;\n",
"Q = 1.8/60*10**-3; #Flow in m**3 per second\n",
"l = 6.5;\n",
"ReCrit = 2000;\n",
" #Calculations\n",
"A = (math.pi*d**2)/4;\n",
"MeanVel = Q/A;\n",
"Re = rho*MeanVel*d/mu/10; # Check properly the answer in book there is something wrong\n",
"Dp = 128*mu*l*Q/(math.pi*d**4)\n",
"Qcrit = Q*ReCrit/Re*10**3;\n",
"\n",
"print \"Pressure Loss (kN/m2) :\",round(Dp/1000,0)\n",
"print \"Maximum Flow rate (litres/s) :\",round(Qcrit,0)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pressure Loss (kN/m2) : 715.0\n",
"Maximum Flow rate (litres/s) : 112.0\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.3, Page 341"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"\n",
" #Initializing the variables\n",
"mu = 1.14*10**-3;\n",
"rho = 1000;\n",
"d = 0.04;\n",
"Q = 4*10**-3/60; #Flow in m**3 per second\n",
"l = 750;\n",
"ReCrit = 2000;\n",
"g = 9.81;\n",
"k = 0.00008; # Absolute Roughness\n",
"\n",
" #Calculations\n",
"A = (math.pi*d**2)/4;\n",
"MeanVel = Q/A;\n",
"Re = rho*MeanVel*d/mu;\n",
"Dp = 128*mu*l*Q/(math.pi*d**4);\n",
"hL = Dp/(rho*g);\n",
"f = 16/Re;\n",
"hlDa = 4*f*l*MeanVel**2/(2*d*g); # By Darcy Equation\n",
"Pa = rho*g*hlDa*Q;\n",
"\n",
" #Part(b)\n",
"Q = 30*10**-3/60; #Flow in m**3 per second\n",
"MeanVel = Q/A;\n",
"Re = rho*MeanVel*d/mu;\n",
"RR = k/d; # relative roughness\n",
"f = 0.008 #by Moody diagram for Re = 1.4 x 10**4 and relative roughness = 0.002\n",
"hlDb = 4*f*l*MeanVel**2/(2*d*g); # By Darcy Equation\n",
"Pb = rho*g*hlDb*Q;\n",
"\n",
"\n",
"print \"!---- Case (a) ----!\\n\",\"Head Loss(mm) :\",round(hlDa*1000,1)\n",
"print \"Power Required (W) :\",round(Pa,4)\n",
"print \"\\n!---- Case (b) ----!\\n\",\"Head Loss(m) :\",round(hlDb,2)\n",
"print \"Power Required (W) :\",round(Pb,0)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"!---- Case (a) ----!\n",
"Head Loss(mm) : 92.5\n",
"Power Required (W) : 0.0605\n",
"\n",
"!---- Case (b) ----!\n",
"Head Loss(m) : 4.84\n",
"Power Required (W) : 24.0\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.4, Page 343"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"\n",
" #Initializing the variables\n",
"w = 4.5;\n",
"d = 1.2 ;\n",
"C = 49;\n",
"i = 1/800;\n",
"\n",
" #Calculations\n",
"A = d*w;\n",
"P = 2*d + w;\n",
"m = A/P;\n",
"v = C*(m*i)**0.5;\n",
"Q = v*A;\n",
"\n",
"print \"Mean Velocity (m/s):\",round(v,2)\n",
"print \"Discharge (m3/s) :\",round(Q,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mean Velocity (m/s): 1.53\n",
"Discharge (m3/s) : 8.28\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.5, Page 348"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import sympy\n",
"from sympy import symbols\n",
"\n",
" #Initializing the variables\n",
"r,R = symbols('r R')\n",
"\n",
"#Calculations\n",
"rbyR=round((1-(49/60)**7),3)\n",
"r = (rbyR)*R \n",
"\n",
"#Result\n",
"print \"radius at which actual velocity is equal to mean velocity is\",r"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"radius at which actual velocity is equal to mean velocity is 0.758*R\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.7, Page 355"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"\n",
" #Initializing the variables\n",
"d1 = 0.140;\n",
"d2 = 0.250;\n",
"DpF_DpR = 0.6; #Difference in head loss when in forward and in reverse direction\n",
"K = 0.33 #From table\n",
"g = 9.81;\n",
" #Calculations\n",
"ratA = (d1/d2)**2;\n",
"v =(DpF_DpR*2*g/((1-ratA)**2-K))**0.5;\n",
"\n",
"print \"Velocity (m/s):\",round(v,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Velocity (m/s): 9.13\n"
]
}
],
"prompt_number": 8
}
],
"metadata": {}
}
]
}
|