1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chapter 8 : Laminar Flow"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 8.1 Page no 286"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a) Maximum shear stress = 1.232 N/m**2\n",
"(b) Maximum velocity = 0.645 m/s\n",
"(c) Discharge = 4.1e-06 m**3/s\n",
"Reynolds number = 547.0 is less than 2000, the flow is laminar and the calculations are valid\n"
]
}
],
"source": [
"# Determine maximum velocity and shear stress\n",
"\n",
"# Given\n",
"\n",
"from math import *\n",
"\n",
"P1 = 200 # Pressure at inlet in kPa\n",
"\n",
"P2 = 260 # Pressure at outlet in kPa\n",
"\n",
"d = 0.004 # diameter in m\n",
"\n",
"L = 8 # length of pipe in meters\n",
"\n",
"z = 6 # height of the pipe from the ground\n",
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2\n",
"\n",
"# properties of kerosene\n",
"\n",
"mu = 19.1*10**-4 # viscosity of kerosene at 20 deg C\n",
"\n",
"S = 0.81 # specific gravity of kerosene\n",
"\n",
"rho = 1000 # density in kg/m**3\n",
"\n",
"# Solution\n",
"\n",
"# calculating direction of flow\n",
"\n",
"p1 = (P1+g*z*S)*1000 # point 1\n",
"\n",
"p2 = (P2)*1000 # point 2\n",
"\n",
"# direction of flow is from point 1-2\n",
"\n",
"# shear stress\n",
"\n",
"Sp = -((p1-p2)/sqrt(L**2+z**2))\n",
"\n",
"r = d/2\n",
"\n",
"Tau_max = r*Sp/2\n",
"\n",
"print \"(a) Maximum shear stress =\",round(Tau_max,3),\"N/m**2\"\n",
"\n",
"# maximum velocity\n",
"\n",
"Vmax = r**2*Sp/(4*mu)\n",
"\n",
"print \"(b) Maximum velocity =\",round(Vmax,3),\"m/s\"\n",
"\n",
"# discharge\n",
"\n",
"Q = pi*r**4*Sp/(8*mu)\n",
"\n",
"print \"(c) Discharge = \",round(Q,7),\"m**3/s\"\n",
"\n",
"# calculate reynolds number\n",
"\n",
"V = Vmax/2\n",
"\n",
"R = rho*V*d*S/mu\n",
"\n",
"print \"Reynolds number =\",round(R,0),\"is less than 2000, the flow is laminar and the calculations are valid\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example no 8.2 Page no 289"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"R = 1299.0 is lesss than 2000 , the flow is laminar\n",
"Head loss = 3.77 cm of water\n"
]
}
],
"source": [
"# Determine the head loss\n",
"\n",
"# Given\n",
"\n",
"d = 0.02 # diameter of the pipe in m\n",
"\n",
"l = 30 # length of the pipe in m\n",
"\n",
"v = 0.1 # velocity in m/s\n",
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2\n",
"\n",
"# for water at 5 deg C\n",
"\n",
"nu = 1.54*10**-6 # kinematic viscosity of water in m**2/s\n",
"\n",
"# Solution\n",
"\n",
"R = v*d/nu\n",
"\n",
"print \"R = \",round(R,0),\"is lesss than 2000 , the flow is laminar\"\n",
"\n",
"f = 64/R # friction factor\n",
"\n",
"Hf = f*l*v**2/(2*g*d) # head loss due to friction\n",
"\n",
"H=Hf*100\n",
"\n",
"print \"Head loss = \",round(H,2),\"cm of water\"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 8.3 Page no 290"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"R = 40.07 is less than 2000 and hence flow is laminar\n",
"Horse power required to pump the oil = 10.6\n"
]
}
],
"source": [
"# Horsepower required to pump 50 tons of oil\n",
"\n",
"# Given\n",
"\n",
"from math import *\n",
"\n",
"# oil properties\n",
"\n",
"S = 0.92 # specific gravity\n",
"\n",
"gma = S*62.4 # density in lbs/ft**3\n",
"\n",
"nu=0.0205 # viscosity in ft**2/s\n",
"\n",
"W = 50 # weight of oil\n",
"\n",
"d = 9 # diameter of the pipe in inches\n",
"\n",
"g = 32.2 # acceleration due to gravity in ft/s**2\n",
"\n",
"# Solution\n",
"\n",
"Q = W*2000/(gma*3600) # discharge in ft**3/s\n",
"\n",
"A = pi*d**2/(4*144) # area of pipe\n",
"\n",
"V = Q*1000/(A) # velocity in ft/s\n",
"\n",
"R = V*0.75/(nu*1000) # Reynolds number\n",
"\n",
"print \"R =\",round(R,2),\"is less than 2000 and hence flow is laminar\"\n",
"\n",
"f = 64/R # friction factor\n",
"\n",
"Hf = (f*5280*(V/1000)**2)/(2*g*0.75)\n",
"\n",
"Hp = gma*Q*Hf/(550)\n",
"\n",
"print \"Horse power required to pump the oil = \",round(Hp,1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 8.4 Page no 291"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Viscosity of the liquid = 0.0182 poise\n"
]
}
],
"source": [
"# Viscosity of the liquid in poise\n",
"\n",
"# Given\n",
"\n",
"from math import *\n",
"\n",
"V = 50 # Volume in m**3\n",
"\n",
"d = 5 # diameter in m\n",
"\n",
"d1 = 0.1 # diameter of bore\n",
"\n",
"l = 10 # length of the tube\n",
"\n",
"t = 20*60 # time in seconds\n",
"\n",
"rho = 0.88 # density in g/cm**3\n",
"\n",
"H1 = 5 # height from the base in m\n",
"\n",
"A = pi*d**2/4\n",
"\n",
"a = pi*d1**2/4\n",
"\n",
"# Solution\n",
"\n",
"# From derivation we obtain a equation for T\n",
"\n",
"H2 = H1-(V/A)\n",
"\n",
"mu = t*rho*a*(0.1)*98.1/(32*A*10*log(H1/H2))\n",
"\n",
"print \"Viscosity of the liquid =\",round(mu,4),\"poise\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 8.5 Page no 297"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Discharge q = 0.013 per unit ft of the plate\n",
"Shear stress on the plate = 0.086 lbs/ft**2 and resisting the motion of the plate\n"
]
}
],
"source": [
"# Velocity distribution; Discharge ; shear on the upper plate\n",
"\n",
"# Given\n",
"\n",
"from math import *\n",
"\n",
"# properties of kerosene oil at 20 deg C\n",
"\n",
"S = 0.81 # specific gravity of oil\n",
"\n",
"mu = 4*10**-5 # viscosity of oil in lb.s/ft**2\n",
"\n",
"gma = 62.4*S # density in lbs/ft**3\n",
"\n",
"p1 = 6.51 # pressure at point 1 in psia\n",
"\n",
"p2 = 8 # pressure at point 2 in psia\n",
"\n",
"h = 0.006 # distance between the plate in ft\n",
"\n",
"l = 4 # length of the plate in ft\n",
"\n",
"theta = pi/6 # angle of inclination\n",
"\n",
"# Solution\n",
"\n",
"# point 1\n",
"\n",
"P1 = p1*144 + gma*l*sin(theta)\n",
"\n",
"# point 2\n",
"\n",
"P2 = p2*144\n",
"\n",
"# flow is taking from poont 2-1\n",
"\n",
"Sp = (P2-P1)/4\n",
"\n",
"# equation for u = 2154.75*y-359125*y**2\n",
"\n",
"y = h\n",
"\n",
"# discharge per ft width\n",
"\n",
"q = (2154.75*y**2/2) - (359125*y**3/3)\n",
"\n",
"print \"Discharge q = \",round(q,3),\"per unit ft of the plate\"\n",
"\n",
"# to find shear at the top of the plate take du/dy = 0\n",
"\n",
"dV = 2154.75 - 718250*h\n",
"\n",
"# shear stress\n",
"\n",
"T = -mu*dV\n",
"\n",
"print \"Shear stress on the plate = \",round(T,3),\"lbs/ft**2 and resisting the motion of the plate\"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|