1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chapter 12: Turbomachines"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 12.1 Page no 443"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Efficiency of th pump = 74.0 %\n"
]
}
],
"source": [
"# Example 12.1\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
"# Given\n",
"\n",
"Q = 0.25 # discharge from the pump in m**3/s\n",
"\n",
"gma= 0.8*9810 # specific weight in kg/m**3\n",
"\n",
"H=25 # elevation head in m\n",
"\n",
"T = 350 # Torque to drive the shaft in Nm\n",
"\n",
"N = 1800 # Speed in RPM\n",
"\n",
"w = 2*pi*N/60 # angular velocity\n",
"\n",
"# Solution\n",
"\n",
"Eff = gma*Q*H*100/(T*w) # efficiency\n",
"\n",
"print \"Efficiency of th pump =\",round(Eff,0),\"%\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 12.2 Page no 447"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" (a)\n",
"Radial velocity at exit = 10.6 m/s\n",
"Whirl velocity = 25.3 m/s\n",
"Relative velocity = 12.25 m/s\n",
"Actual velocity = 27.43 m/s\n",
"(b)\n",
"Head added for no inlet whirl = 81.0 m\n",
"(c)\n",
"Power required = 317.8 kW\n"
]
}
],
"source": [
"# Example 12.2\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
"# Given\n",
"\n",
"d = 0.4 # diameter of the pump in m\n",
"\n",
"b = 0.03 # width in m\n",
"\n",
"theta = pi/3 # blade angle\n",
"\n",
"N = 1500 # speed in RPM\n",
"\n",
"Q = 0.4 # flow rate in m**3/s\n",
"\n",
"g = 9.81 # acceleration due to gravity in m/s**2\n",
"\n",
"# Solution\n",
"\n",
"w = 2*pi*N/60 # anggular velocity in rad/s\n",
"\n",
"u2 = (d/2)*w # blade velocity in m/s\n",
"\n",
"V2r = Q/(2*pi*(d/2)*b) # relative velocity in m/s\n",
"\n",
"print \"(a)\"\n",
"\n",
"print \"Radial velocity at exit =\",round(V2r,1),\"m/s\"\n",
"\n",
"V2t = u2 - V2r*(cos(theta)/sin(theta))\n",
"\n",
"print \"Whirl velocity = \",round(V2t,1),\"m/s\"\n",
"\n",
"v2 = V2r/sin(theta)\n",
"\n",
"print \"Relative velocity = \",round(v2,2),\"m/s\"\n",
"\n",
"V2 = sqrt(V2t**2+V2r**2)\n",
"\n",
"print \"Actual velocity =\",round(V2,2),\"m/s\"\n",
"\n",
"print \"(b)\"\n",
"\n",
"H = u2*V2t/g\n",
"\n",
"print\"Head added for no inlet whirl =\",round(H,0),\"m\"\n",
"\n",
"print \"(c)\"\n",
"\n",
"P = g*Q*H\n",
"\n",
"print \"Power required =\",round(P,1),\"kW\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 12.3 Page no 450"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Impeller size = 38.45 cm\n",
"Speed of the pump = 1500.0 RPM\n"
]
}
],
"source": [
"# Example 12.3\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
"# Given\n",
"\n",
"d = 0.36 # diameter of the impeller of pump\n",
"\n",
"N = 1500 # Speed of impeller in RPM\n",
"\n",
"# Solution\n",
"\n",
"# For best efficiency\n",
"\n",
"Q1 = 82 # discharge in l/s\n",
"\n",
"H1 = 17.5 # Head in m\n",
"\n",
"Eta = 0.8 # efficiency \n",
"\n",
"Q2 = 100 # discharge in l/s\n",
"\n",
"H2 = 20 # head in m\n",
"\n",
"# Solving the simulataneous equation we get\n",
"\n",
"D2 = 38.45\n",
"\n",
"print \"Impeller size =\",round(D2,2),\"cm\"\n",
"\n",
"N2 = 1500 \n",
"\n",
"print \"Speed of the pump =\",round(N2,0),\"RPM\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 12.4 Page no 454 "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Discharge, Q = 1.11 ft**3/s\n",
"Dynamic head of the pump, H = 122.1 m\n",
"Specific speed of the pump, Ns = 1096.0 RPM\n"
]
}
],
"source": [
"# Example 12.4\n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
"# Given\n",
"\n",
"q = 500 # discharge in cgm\n",
"\n",
"Q = 500/449 # discharge in ft**3/s\n",
"\n",
"D = 0.667 # diameter in ft\n",
"\n",
"A = pi*D**2/4\n",
"\n",
"V = Q/A # velocity in ft/s\n",
"\n",
"g = 32.2 # acceleration due to gravity in ft/s**2\n",
"\n",
"N = 1800 # speed in RPM\n",
"\n",
"# Solution\n",
"\n",
"# for water at 65 deg C\n",
"\n",
"nu = 1.134*10**-5 # viscosity in ft**2/s\n",
"\n",
"e = 0.00085 # epssilon in ft\n",
"\n",
"r = 0.001275 \n",
"\n",
"R = V*D/nu # reynolds no\n",
"\n",
"f = 0.022 # from moody's diagram\n",
"\n",
"Hl = V**2*(12.1+(f*224.9))/64.4\n",
"\n",
"hs = 119.4 + Hl\n",
"\n",
"print \"Discharge, Q = \",round(Q,2),\"ft**3/s\"\n",
"print \"Dynamic head of the pump, H =\",round(hs,1),\"m\"\n",
"\n",
"Ns = N*sqrt(q)/(hs)**(3/4)\n",
"\n",
"print \"Specific speed of the pump, Ns =\",round(Ns,0),\"RPM\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example 12.5 Page no 457"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Minimum value of static suction lift = 4.02 m\n"
]
}
],
"source": [
"# Example 12.5 \n",
"\n",
"from math import *\n",
"\n",
"from __future__ import division\n",
"\n",
"# Given\n",
"\n",
"H = 60 # height in m\n",
"\n",
"Pb = 98*10**3 # barometric pressure in N/m**2\n",
"\n",
"Hl = 1 # head in m\n",
"\n",
"Pv = 1707 # vapour pressure \n",
"\n",
"sigma = 0.08\n",
"\n",
"w = 9810 # specific weight\n",
"\n",
"# Solution\n",
"\n",
"Npsh_m = sigma*60 # minimum NPSH\n",
"\n",
"Hsm = (Pb/w)-(Pv/w)-Npsh_m-Hl\n",
"\n",
"print \"Minimum value of static suction lift = \",round(Hsm,2),\"m\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|