1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
{
"metadata": {
"name": "",
"signature": "sha256:5a87247e3e7d335ec3f93a6763434ef47db612054d0c0f12922c9d7638e3f184"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 15 : Impulse Turbines"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.1 Page No : 486"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from numpy import *\n",
"\t\n",
"#Initialization of variables\n",
"z2 = 500.\t#ft\n",
"z1 = 300.\t#ft\n",
"D = array([1, 1.5, 2 ,2.5, 3, 4, 6])\n",
"g = 32.2\n",
"gam = 62.4\n",
"\t\n",
"#calculations\n",
"Dj = D/12\n",
"Vj = sqrt((z2-z1)*2*g/(1.04 + 640.*Dj**4))\n",
"Aj = math.pi/4 *Dj**2\n",
"Q = Aj*Vj\n",
"Pjet = gam*Q*Vj**2 /(2*g) /550\n",
"Pj = max(Pjet)\n",
"for i in range(0,len(Pjet)):\n",
" if(Pjet[i] == Pj):\n",
" break\n",
" \n",
"diameter = D[i]\n",
"\t\n",
"#Results\n",
"print \"Dj,in Dj,ft Vj,fps Aj,ft**2 Q=AjVj,cfs Pjet,hp\"\n",
"for i in range(len(D)):\n",
" print \"%5.1f %5.3f %5.f %7.4f %5.2f %5.1f\"%(D[i],Dj[i],Vj[i],Aj[i],Q[i],Pjet[i])\n",
"print \"Thus a pipe of %d in will be the optimum\"%(diameter)\n",
"\n",
"# answer are slightly different because of rounding off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Dj,in Dj,ft Vj,fps Aj,ft**2 Q=AjVj,cfs Pjet,hp\n",
" 1.0 0.083 110 0.0055 0.60 12.7\n",
" 1.5 0.125 104 0.0123 1.27 24.2\n",
" 2.0 0.167 92 0.0218 2.00 29.6\n",
" 2.5 0.208 76 0.0341 2.58 26.1\n",
" 3.0 0.250 60 0.0491 2.96 19.0\n",
" 4.0 0.333 38 0.0873 3.31 8.4\n",
" 6.0 0.500 18 0.1963 3.48 1.9\n",
"Thus a pipe of 2 in will be the optimum\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.2 Page No : 498"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"from sympy.functions.elementary.trigonometric import acot\n",
"\t\n",
"#Initialization of variables\n",
"phi = 0.46\n",
"g = 32.2\n",
"k = 0.44\n",
"cv = 0.98\n",
"d = 10. \t#in\n",
"A = 0.545 \t #ft**2\n",
"beta = 160. \t#degrees\n",
"\t\n",
"#calculations\n",
"u = phi*math.sqrt(2*g)\n",
"V1 = cv*math.sqrt(2*g)\n",
"gQ = 62.4*A*V1\n",
"T = d/2 *gQ/g *(1 - math.cos(math.radians(beta)) /math.sqrt(1+k) )*math.sqrt(2*g)*(cv-phi)\n",
"Power = T*2*u/d\n",
"\t\n",
"#Results\n",
"print \"Torque required = %d ft lb\"%(T)\n",
"print \" Power transferred = %d ft lb/s\"%(Power)\n",
"Pi = gQ\n",
"He = Power/Pi\n",
"print \" Hydraulic efficiency = %.2f\"%(He)\n",
"v1 = V1-u\n",
"v2 = v1/(math.sqrt(1+k))\n",
"hl = k*v2**2 /(2*g)\n",
"print \"Head loss in bucket friction = %.1f %%\"%(hl*100)\n",
"Hn = (1/cv**2 -1)*V1**2 /(2*g)\n",
"print \" Head loss in nozzle = %.4f\"%(Hn*100)\n",
"V2cos = u+v2*math.cos(math.radians(beta))\n",
"V2sin = v2*math.sin(math.radians(beta))\n",
"#alpha = math.degrees(1/math.atan(V2cos/V2sin))\n",
"alpha = math.degrees(acot(V2cos/V2sin))\n",
"V2 = V2sin/math.sin(math.radians(alpha))\n",
"Hd = V2**2/(2*g)\n",
"print \" Head loss at discharge = %.1f %%\"%(Hd*100)\n",
"Htotal = Hd+Hn+hl\n",
"print \" Total head loss = %.2f %%\"%(Htotal*100)\n",
"\n",
"# rounding off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Torque required = 309 ft lb\n",
" Power transferred = 228 ft lb/s\n",
" Hydraulic efficiency = 0.85\n",
"Head loss in bucket friction = 8.3 %\n",
" Head loss in nozzle = 3.9600\n",
" Head loss at discharge = 2.5 %\n",
" Total head loss = 14.70 %\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 15.3 Page No : 501"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\t\n",
"#Initialization of variables\n",
"cv = 0.98\n",
"g = 32.2\n",
"h = 1320. \t#ft\n",
"A = 0.196 \t#ft**2\n",
"eta = 0.85\n",
"ne = 400.\n",
"phi = 0.45\n",
"\t\n",
"#calculations\n",
"V = cv*math.sqrt(2*g*h)\n",
"Q = A*V\n",
"bhp = eta*62.4*Q*h/550\n",
"ns = ne*math.sqrt(bhp) /h**(5./4)\n",
"u = phi*math.sqrt(2*g*h)\n",
"D = u*60/math.pi/ne\n",
"\t\n",
"#Results\n",
"print \"Pitch diameter = %.2f ft\"%(D)\n",
"\n",
"\n",
"# part b\n",
"#Initialization of variables\n",
"cv = 0.98\n",
"g = 32.2\n",
"h = 1320. \t#ft\n",
"A = 0.196 \t#ft**2\n",
"eta = 0.85\n",
"ne = 400.\n",
"phi = 0.45\n",
"\t\n",
"#calculations\n",
"V = cv*math.sqrt(2*g*h)\n",
"Q = A*V/3\n",
"bhp = eta*62.4*Q*h/550\n",
"ne2 = 600.\n",
"ns1 = ne2*math.sqrt(bhp) /h**(5./4)\n",
"D = 2500./ne2\n",
"Dj = math.sqrt(Q*4/V/math.pi)\n",
"\t\n",
"#Results\n",
"print \" Jet diameter = %.3f ft\"%(Dj)\n",
"print \" Specific speed = %.2f \"%(ns1)\n",
"print \" Pitch Diameter = %.2f ft\"%(D)\n",
"print \" Operating speed = %d rpm\"%(ne2)\n",
"\n",
"# rounding off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pitch diameter = 6.26 ft\n",
" Jet diameter = 0.288 ft\n",
" Specific speed = 3.68 \n",
" Pitch Diameter = 4.17 ft\n",
" Operating speed = 600 rpm\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|