1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 17 : The boundary layer"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.1 page no : 519\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate the boundary layer thickness\n",
"#for the aeroplane\n",
"\n",
"# variables\n",
"v=1.61*10**(-4) #ft**2/s\n",
"x=2. #ft\n",
"V=200. #miles/hr\n",
"\n",
"# calculation\n",
"#1 mile = 5280 ft\n",
"#1 hr = 3600 sec\n",
"delta_aeroplane=5*(v*x/(V*5280/3600.0))**0.5\n",
"\n",
"# result\n",
"print \"The boundary layer thickness for the aeroplane is %f ft\\n\"%delta_aeroplane\n",
"#for the boat\n",
"v1=1.08*10**(-5) #ft**2/s\n",
"x1=2. #ft\n",
"V1=10. #miles/hr\n",
"#1 mile = 5280 ft\n",
"#1 hr = 3600 sec\n",
"delta_boat=5*(v1*x1/(V1*5280/3600.0))**0.5\n",
"print \"The boundary layer thickness for the boat is %f ft\"%delta_boat"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The boundary layer thickness for the aeroplane is 0.005239 ft\n",
"\n",
"The boundary layer thickness for the boat is 0.006068 ft\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.2 page no : 521\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate the force required to tow a square metal plate by a boat\n",
"\n",
"# variables\n",
"rho_water=998.2 #Kg/m**3\n",
"V=15. #km/hr\n",
"v=1.004*10**(-6) #m**2/s\n",
"l=1. #m length of plate\n",
"\n",
"#Calculations\n",
"#1 km = 1000 m\n",
"#1 hr = 3600 s\n",
"Rx=(V*1000/3600.)*l/v #dimentionless (reynold's number)\n",
"Cf=1.328/Rx**0.5 #dimentionless\n",
"F=Cf*rho_water*(V*1000/3600.0)**2 #N\n",
"\n",
"#Result\n",
"print \"The force required to tow the square plate is %f N\"%F"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The force required to tow the square plate is 11.297065 N\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.3 page no : 528\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate the distance between the wall and edge of the laminar sublayer and buffer layer\n",
"\n",
"#Variables\n",
"V=10. #ft/s\n",
"l=0.25 #ft\n",
"v=1.08*10**(-5) #ft**2/s\n",
"f=0.0037 #dimentionless (fanning friction factor)\n",
"u01=5. #dimentionless\n",
"y01=5. #dimentionless\n",
"\n",
"#Calculations\n",
"R=V*l/v #dimentionless (reynold's number)\n",
"u1=V*(f/2.0)**0.5 #ft/s\n",
"r1=y01*v/u1 #ft\n",
"\n",
"#for buffer layer\n",
"u02=12. #dimentionless\n",
"y02=26. #dimentionless\n",
"r2=y02*v/u1 #ft\n",
"\n",
"#Results\n",
"print \"the distance between the wall and edge of the laminar sublayer is %f ft\\n\"%r1\n",
"print \"the distance between the wall and edge of the buffer layer is %f ft\"%r2\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the distance between the wall and edge of the laminar sublayer is 0.000126 ft\n",
"\n",
"the distance between the wall and edge of the buffer layer is 0.000653 ft\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 17.4 page no : 530\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Calculate the boundary layer thickness and the drag on the plate\n",
"\n",
"# variables\n",
"V=50. #ft/s\n",
"l=20. #ft\n",
"b=1. #ft\n",
"v=1.08*10**(-5) #ft**2/s\n",
"\n",
"# calculation and result\n",
"R=V*l/v #dimentionless (reynold's number)\n",
"delta=0.37*l/R**0.2 #ft\n",
"print \"The boundary layer thichness at the end of the plate is %f ft\\n\"%delta\n",
"Cf=0.072/R**0.2 #dimentionless\n",
"rho_water=62.3 #lbm/ft**3\n",
"V=50. #ft/s\n",
"#let A be the area of contact\n",
"A=2*l*b #ft**2\n",
"#1 lbf.s**2 = 32.2 lbm.ft\n",
"F=(1/2.0)*Cf*rho_water*V**2*A/32.2 #lbf\n",
"print \"The drag on the plate is %f lbf\"%F"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The boundary layer thichness at the end of the plate is 0.188763 ft\n",
"\n",
"The drag on the plate is 177.672178 lbf\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|