summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics_/Chapter6.ipynb
blob: c0425cb0df3665fe3b911d1c87ceac7173b69168 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
{
 "metadata": {
  "name": "",
  "signature": "sha256:779dd4cf4a63ec7ae3b3ee56b532415f0e7430caa393646786820e5bcc3483bb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Chapter 6 : Dimensional Analysis and Dynamic Similitude"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 6.2 Page no 233"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Velocity of the flow\n",
      "\n",
      "# Given\n",
      "\n",
      "L = 10                          # length scale lp/l\n",
      "\n",
      "# crue oil at 20 deg C\n",
      "\n",
      "rhop = 0.86*998.2                 # density inn kg/m**3\n",
      "\n",
      "mup = 8*10**-3                    # viscosity in Ns/m**2\n",
      "\n",
      "Vp = 2.5                          # Velocity in m/s\n",
      "\n",
      "# water at 20 deg C\n",
      "\n",
      "rhom = 998.2                     # density in kg/m**3\n",
      "\n",
      "mum = 1.005*10**-3               # viscosity in Ns/m**2\n",
      "\n",
      "# Solution\n",
      "\n",
      "Vm = Vp*L*(rhop/rhom)*(mum/mup)  # velocity in m/s\n",
      "\n",
      "print \"Hence the model should be tested at a velocity of \",round(Vm,2),\"m/s. This velocity in the model is called corresponding velocity\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Hence the model should be tested at a velocity of  2.7 m/s. This velocity in the model is called corresponding velocity\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 6.3 Page no 233"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Mximum head on the crest and corresponding discharge for dynamically similar conditions\n",
      "\n",
      "# Given\n",
      "\n",
      "from __future__ import division\n",
      "\n",
      "from math import *\n",
      "\n",
      "l = 300                               # length in ft\n",
      "\n",
      "Q = 100000                            # discharge in cfs\n",
      "\n",
      "Cd = 3.8                              # coefficient of discharge\n",
      "\n",
      "L = (1/50)                              # length scale\n",
      "\n",
      "# Solution\n",
      "\n",
      "Qm = 100000*(L)**(5/2)                     # model discharge in cfs\n",
      "\n",
      "print \"Maximum discharge, Qm = \",round(Qm,8),\"cfs\"\n",
      "\n",
      "H = (Q/(Cd*l))**(2/3)                 # height over spill way\n",
      "\n",
      "h = H*L*12                              # head over spill model\n",
      "\n",
      "print \"Maximum head over crest = \",round(h,2),\"ft\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum discharge, Qm =  5.65685425 cfs\n",
        "Maximum head over crest =  4.74 ft\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}