summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics/Chapter_4.ipynb
blob: b2b61c13a386a404fcf4052b7b4979f6f03d1781 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{
 "metadata": {
  "name": "",
  "signature": "sha256:27e5ceeda6b81a3ecd6f6bb5786adb4aab2ca8fa416667ba9a518e71b4bbf42b"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4: Motion Fluid Particles and Streams"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.1, Page 103"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from pylab import *\n",
      "import numpy as np\n",
      "%pylab inline\n",
      "\n",
      " #Initializing  the  variables\n",
      "x = [0, 23, 28, 31, 32, 29, 22, 14, 0]\n",
      "y = np.linspace(0,80,9)\n",
      "xlabel('Velocity  (m/s)')\n",
      "ylabel('Distance  from  one  side(mm)')\n",
      "title('Velocity Distribution Curve')\n",
      "grid(1)\n",
      "\n",
      " #Calculations\n",
      "plot(x,y,'-*')\n",
      "show()\n",
      "mu=[17.5 , 26.0,  29.6,  31.9,  30.7,  25.4,  18.1,  7.7]\n",
      " #  mean  velocity\n",
      "print \"Mean velocity (m/s):\",round(mean(mu),2)\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stderr",
       "text": [
        "WARNING: pylab import has clobbered these variables: ['linalg', 'draw_if_interactive', 'random', 'power', 'info', 'fft']\n",
        "`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEZCAYAAABxbJkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX+x/HX4J4bCoi7eMkUBURccSUNUdxK3MPEtMW0\nstJrplZqN9tc6JrpvSZeJbfMum64pJKa1y137fpzgcQdVBJFBZnv749zGSXBYZnhzIHP8/HgIWdg\nzrzn4ON853w/5/v9mpRSCiGEEEWSk94BhBBC6EcaASGEKMKkERBCiCJMGgEhhCjCpBEQQogiTBoB\nIYQowqQRELkSFxeHk5MTZrM5X/spX748cXFxtgmVAyNGjOCjjz6yyb7OnTtH+fLlybi7OjAwkG++\n+cYm+wYICQlh8eLFNtufEI8jjUAR1KVLFz744INHHv/3v/9NtWrV8n2Cz4nk5GQ8PDwACA8PZ9Kk\nSXnel4eHB0888QQVKlTAxcWFNm3aMG/ePB4eAvP1118zceLEHO1r69atj/2d2rVrk5ycjMlkAsBk\nMlm+z60PP/yQwYMHZ3ps/fr1jzxmK3v37iUkJITKlStTvnx5/P39mTt3rl1eSxiDNAJFUHh4OFFR\nUY88vnjxYsLCwnByMtZ/C5PJxNq1a7l58yZXrlxhypQpzJgxg2HDhuVpX48bP3n//v38RNXVf/7z\nHzp16kT37t25cOECycnJzJ8/n5iYmDztryA+LIgCoESRk5KSoipWrKi2b99ueez69euqdOnS6siR\nI8psNquJEyeq6tWrqwoVKqgePXqohIQEpZRSsbGxymQyqfT0dMv2M888o8qVK6dq1KihZs2aZdln\nWlqaeu+991T16tVVuXLllJ+fnzp//rxSSimTyaROnz6t5s2bp0qUKKFKliypypUrp3r06KE+//xz\nFRoaminz66+/rt58880s34+Hh4fasmVLpsdOnDihnJyc1PHjx5VSSg0ZMkRNnDhRKaXUxYsXVefO\nnVW5cuWUs7OzatOmjTKbzSosLEw5OTmpMmXKqHLlyqnPP//c8n6/+eYb5eHhoQIDA1VcXFymYxAY\nGKjGjx+vWrZsqcqVK6eCgoLU1atXlVJKbdu2TdWsWTNTtjp16qiffvpJRUdHq5IlS6oSJUpYjo9S\nSnXo0EHNnz9fKaVUenq6evfdd1WVKlVUxYoVVZ8+fdT169cz/S3+9a9/qTp16qjy5curSZMmZft3\nb9OmjRo3bly2P4+MjFRt27bN9JjJZFJnzpyxHMNXX31VhYSEqPLly6tPP/1UVa1a1XIclFJq1apV\nytfX15I9u/9HwnEY6yOfsIkyZcrQr18/Fi1aZHlsxYoVeHl54ePjw7Rp09i6dSuHDh3i+vXr1KpV\ni+HDh2e5rz59+uDr60tSUhJbtmzhk08+Ye3atQB89NFHREdHs3v3bpKTk1m6dCllypSxPNdkMvHy\nyy/z/PPPM27cOJKTk1m9ejVhYWFs2LCBP/74A9A+fS9fvpwhQ4bk+D16eXnx1FNPsWPHDstrZXTZ\nfPHFF3h6epKUlMT169eZPn06JpOJxYsXU7t2bdauXUtycjJjxoyx7G/Pnj2cPHmSjRs3PnKloJQi\nKiqKJUuWcO3aNdzc3Hj11VezzZaRpUuXLrz33nsMGDCA5ORkDh48+EjWOXPm8OOPP3Lw4EEuX75M\n8eLFeemllzLtb8+ePZw+fZqdO3fy6aefcvTo0UdeMyUlhd27d9O7d+8cH8OsrFixgqlTp3Lz5k1G\njx5N2bJlM3WfLVmyhOeffx6ATz75JMf/j4R+pBEoooYMGcLKlStJTU0FYNGiRZaT7Pz585k6dSpu\nbm4UK1aMiRMnsnbtWu7evZtpH6dOneLo0aN89NFHFCtWjPr16/Pyyy/z7bffArBgwQKmTZtGrVq1\nAGjQoAGVK1fOMs/DJ9aqVavSrl07vvvuOwA2bNiAm5sbTZo0ydV7dHV15fr16488Xq5cOS5dusTv\nv/+OyWSiZcuWVvf1/vvvU7JkSUqWLPnIz0wmE0OHDuUvf/kLJUuWZMqUKaxevZp79+5Z3a9S6rHd\nT0uXLmXMmDFUr16d0qVL8/HHH/Pvf/+bO3fuWH5nwoQJFC9eHF9fX/z8/Dh8+PAj+7lx4wZmsxk3\nNzermbJjMpno3bs3/v7+AJQsWZKBAweydOlSQKvzREdHM3DgQCDn/4+EvqQRKKLatGmDq6srP/zw\nA2fOnGHfvn0MGjQIgPj4eJ577jkqVapEpUqVaNiwISVLluTatWuZ9nHlyhVcXFwyfbqvVasWV69e\nBeDy5cv85S9/yVO+IUOGWOoWUVFReSqUJiQkZGp0Mk62Y8aMoXbt2jzzzDN4eHjwt7/9zeq+qlWr\n9tif16xZ0/J9jRo1SE9Pf+R45cXVq1epXbu2ZbtWrVqkp6eTmJhoeaxq1aqW75944glLw/6wSpUq\n4eTklOl5efHwawEMGjSIVatWkZqayqpVq2jatKml0c/p/yOhL2kEirAXXniBRYsWERUVRZcuXSyf\nEqtVq8aWLVu4ceOG5SslJYUaNWpker67uzvXrl3L9Kk0Pj4ed3d3AKpXr87Zs2et5sjqzppevXpx\n5MgRjh07xrp16yxdDDn122+/cerUKdq2bfvIz8qXL09ERARnz54lOjqaL7/8kk2bNmWbJSfOnz+f\n6ftixYrh4uJCyZIlSUlJsfzMbDZz48YNy7a113N3d+f333+3bMfHx+Pk5ISrq2uu8j3xxBMEBATw\n/fffZ/s7f86ak5O1l5cXderUITo6miVLllg+SEDO/x8JfUkjUIS98MILbN68mfnz52fqb3/55ZeZ\nMGECly5dArSuhOjo6EeeX69ePby9vZk0aRLp6emcPHmSf/7zn5bugKFDhzJhwgTi4+MBOHHiRJbd\nM5UrV850ogOtbhEaGsqgQYNo2bJlpk/aWcn4lJ+WlsbWrVvp3bs3gwcPplGjRpl+Dlr3UsYYhXLl\nylGsWDHLybhy5crExsY+9rWyeu2FCxdy9uxZ7t27x4cffkjPnj0pVaoUXl5e3Lp1i/Xr12M2m/ns\ns8+4ffu25bkuLi7Ex8dn2yXUv39/ZsyYwcWLF7l79y4TJ06kV69ema6+sjsWf/bZZ58xZ84c5s6d\naznZHz582PL38vX15dixYxw+fJjU1FSmTJmSo/0OGjSIWbNmsWPHDvr27Wt5PKf/j4S+pBEowurU\nqUObNm1ISUmhZ8+elscnTJhA27ZtadmyJRUqVMDf35/t27dbfv7wp9eVK1dy6NAhnJ2d6dixI3/9\n61/p0aMHABMnTiQoKIjmzZtToUIFBg8ebOkPfngfw4YNY//+/VSoUCFT4XLIkCEcO3YsR11BPXr0\noEKFCri7uzNx4kTeeOMNIiMjM2XOeM0TJ07Qvn17ypYtS/PmzRk2bBhBQUEAjB07lkmTJuHs7MyM\nGTMeyZrVMTCZTISFhTFo0CBcXV25cuWK5d77SpUqERERweDBg6levTolSpSwdJcA9O3blzt37lCx\nYkWaNWv2yOuMGjWKnj174ufnh7u7O/fu3WP+/PlZ5njcYwABAQFs2bKF1atXU6NGDcqXL8/QoUPp\n2LEjAN7e3owbN4527drx1FNP0aJFi0feZ1b7HjhwINu3b6dTp06Zut+s/T8SjsGkHleVyqcPPviA\npUuX4uTkhLe3N4sWLeLu3bv079+fK1euUK1aNZYvX46zs7O9IggDi4+Pp0GDBly5coVy5crpHUeI\nQsluVwKnT59m8eLFHDt2jP/+978UK1aMpUuX8sEHH9CtWzeOHDlC165dsxy5KgRAREQE/fr1kwZA\nCDuyWyNQuXJlSpQowe3bt7l//z4pKSnUrl0705D4sLAw1q1bZ68IwqBu375NhQoV2LhxI5MnT9Y7\njhCFWnF77bhy5cq888471K5dmzJlyhAcHExQUBAJCQm4uLgA2n3cGbcTCpGhbNmy3Lx5U+8YQhQJ\ndrsSOHPmDLNmzSIuLo6LFy9y69atLOerEUIIoR+7XQns3buX1q1bWz719+7dm19++QU3NzcSExNx\ndXUlISGBKlWqZPl8k6kGcNFe8YQQolDy9PTk9OnTOf59u10JPPnkk+zevZs7d+6glOKnn37C09OT\nkJCQTCNBQ0JCstnDRcqXf5OVKzeglOLiRcW//62YMEHRubOiUiVFrVqK3r0V06YptmxRJCUpyzB8\nvb8++OAD3TMUxeySX/8vya/v15kzZ3J1rrbblUDz5s0tk4s5OTnRpEkTRo0aRUpKCv3792fBggVU\nrVqVFStWZLuPyMiunDqlDTSqVg169tS+AJSCM2dg3z7t6/334dAhqFkTWrSA5s21Lz8/KF3aXu8y\newW5YIqtGTk7SH69SX5jsVsjANqCGR9++GGmx0qXLs3mzZtz9PzQ0OBsf2YywZNPal//G/DI/ftw\n4gTs3as1DJGR8N//gpfXg0ahRQto2BCKFcvruxJCiMLDro1AQSteHHx9ta+MGWvv3NGuEPbtg23b\n4LPP4OJFaNIkc8NQt67WsNhKeHi47XZWwIycHSS/3iS/sdh1xHB+WFvhKT+SkmD//gddSXv3wt27\n0KxZ5q6kP02YKIQQDi+3584iOXeQszM88wyMHw+rVsH583D0KLz2mlZrmD1b6zKqXRtCQ+GTT2Dr\nVvjfGic5ktcl+xyBkbOD5Neb5DeWQtUdlB9ZFZ7Pnn1QX/jgAzh40HEKz0IIYQtFsjsorzIKzxld\nSPv2wcmT0KDBg9pC8+ZSeBZC6Ce3505pBPLp4cJzRuNQEIVnIYTIitQECliZMhAQAG+8AYsXa1cG\n8fHQq1cMrq6wYgV06ABubtClizaeYc0auHxZ7+TZM3qfqOTXl+Q3FqkJ2IGzMzRtCoGBDx67dOnB\n1cLs2dq/5cplvlpo2hQqVtQtthCiCJLuIJ38ufC8b58UnoUQ+Sc1AQOTwrMQIr+kJuAg8tKvmDHi\nedgwmDcPDhyAxMQH4xa2bYM+fbTupvbt4Z13YNky7YrClu2l0ftEJb++JL+xSE3AwWUUngMCHjyW\nlAS//qpdLaxYAWPHancpyYhnIURuSXdQIfFw4TmjK0kKz0IUPVITEIAUnoUoqqQm4CD07lc0mcDT\nU5tme8YM2LFD60bKGLdw7Jg2V5KLi3aF8OqrsGCBNofSli36Zs8vvY99fkl+fRk9f25JTaAIeXiq\n7WHDtMf+PNX2p5/CuXMPrhRkxLMQhZt0B4lHPFx4zuhKksKzEMYgNQFhF1J4FsIYpCbgIIzcr5hV\n9oyptqdOhY0b4dq1B+MWrl7VptquUUMb2PbCC/D3v8Pu3dpiPY6Q30gkv76Mnj+37FoTOHnyJAMG\nDLBsnz17lqlTpxIWFkb//v25cuUK1apVY/ny5Tg7O9szirCxjMJzRvEZHh3xHBkpI56FcHQF1h1k\nNpupUaMGe/fu5bPPPsPT05PRo0cza9YsYmNjiYiIyBxMuoMKhTt34PDhzPWFCxdkqm0h7MVhawKb\nNm1i6tSp7NixA09PT/bu3YuLiwuJiYm0atWK06dPZw4mjUChlVF4fri+kJPCs1KK8eM/Z9q0sZik\nxRAiSw5bE1i2bBkD/9dvkJCQgIuLCwCurq5cvXq1oGIUGCP3K9o7u7MzdOoE776rrfEcH595jeev\nvoJGjR5d43nRoo3MmXOJVas26Zrf3iS/voyeP7cKpBFITU1lzZo19O3btyBeThjQw4XnDRu0ifO2\nbYO+feGnn6Lo3r07Q4fuIDl5BiNHbqdBg+7Mmxeld2whDK9ABotFR0fTtGlT3NzcAHBzcyMxMRFX\nV1cSEhKoUqVKls8LDw/Hw8MDAGdnZ/z8/Aj830otGa21o25nPOYoeXKzHRgYqHuen3/WtgcMCKR/\n/+eZPPkCX311mMREE3/8YSYpqT0rVtTAw0O7qti507HyG/34S37HyWNtOyYmhoULFwJYzpe5USA1\ngQEDBtC1a1eGDBkCwOuvv24pDM+cOZPY2Fi+/PLLzMGkJiAesnLlBl58cSO1apmIjzcTEdGV27eD\nWbxY604aNAgGD4bGjfVOKoS+HK4mcPv2bX766Sd69+5teWzy5MmsW7cOX19foqOjmTJlir1jFLiM\nltqIHDH7qVPxREZ24dix6URGduXKlXhGjYI9e7R6QenSWneSry+MGBHDxYt6J847Rzz+uSH5jcXu\n3UFly5YlMTEx02OVK1dm8+bN9n5pUYiMH/+S5fvQ0OBMP2vQAD76CKZM0SbK++wz8PbW7jYaPBie\ne04b3SyEeJRMGyEKpTt3YPVqWLwYfvkFevTQGoSOHWWgmijcHHacQG5JIyBs5epVWLpUaxAuX35Q\nP/Dx0TuZELbncDWBosrI/YpGzg6P5q9SBd58E/bvh02btCuBkBBt1PKMGVrD4EgK2/E3GqPnzy1p\nBESR0rAhTJsGv/+uNQBHj4KXF3TtCkuWQEqK3gmFKFg57g66e/cuJpOJUqVK2TsTIN1BouCkpMCP\nP2rdRbt3w7PPat1FgYHgJB+ThMHYrCZgNpv58ccfWbp0Kbt27cJsNqOUolixYgQEBPD888/z7LPP\n2m0OF2kEhB4uXXpQP0hMhLAwrUFo2FDvZELkjM1qAoGBgfz666+MGTOGs2fPcunSJS5fvszZs2cZ\nM2YM+/bto0OHDjYJXRgZuV/RyNkhf/mrVYO334aDB2H9ekhPh6AgbcGciAityGxvRfn4OwKj58+t\nbMcJbN68Ocuun1KlStGqVStatWrFvXv37BpOCD35+GhjDqZN0+YxWrRIWzynTRtt4ZyePaFMGb1T\nCpE/OaoJJCQkcP78+UyXGP7+/vYNJt1BwgHduqXVDxYt0u42eu45rUFo107qB8Ix2HycwLhx44iK\niuLJJ5/E6aH/5du2bct7ypwEk0ZAOLgLF7Q7ihYvhps34fnntfpBgwZ6JxNFmc3HCaxcuZLY2Fh+\n/vlntm3bZvkSj2fkfkUjZ4eCy1+jBowdC0eOwL//DffuwdNPawvj/P3vkJCQt/3K8deX0fPnltVG\nwM/Pj5s3bxZEFiEMq3Fj+OILbUbTqVO1ie3q1dPqBt99B3fv6p1QiKxZ7Q7at28fvXr1wtvb21Io\nNplMrF692r7BpDtIGFxysrZy2uLF2t1GoaFad1HbtrKesrAfm9cEvLy8GDFiBN7e3paagMlksvvt\nodIIiMLk/Hn49lutoHznzoPxB/Xq6Z1MFDY2rwlUrFiRN954g44dO1pW3ZHxAdYZuV/RyNnBMfPX\nrAnjxsGxY7BypXaV0K4dBATAnDlw7dqD33XE/Lkh+Y3F6noCrVu3ZsKECXTv3j3TuAF73yIqRGFk\nMoG/v/b1+efahHaLF8P48do014MHy9oHomBZ7Q4KDAzMcmoIuUVUCNv54w/4/nutQThyBPr10xqE\ngACpH4jckfUEhDC433/X6geLF0NamtYYhIWBp6feyYQR2LwmkJiYyBdffMGbb77J66+/zuuvv84b\nb7yRr5BFgZH7FY2cHYyfPzY2hvfegxMntMnsrl3TrgjatIF58+DGDb0TPp7Rj7/R8+eW1Uagc+fO\nXLx4ET8/P5o1a0bTpk1p2rRpjl8gKSmJvn370rhxY7y8vNi9ezfXr18nKCgIX19fgoODSUpKyteb\nEKIwMpmgeXP48kttdPK778KWLeDhod1u+uOPkJqqd0phdFa7g5o1a8b+/fvz/AJ9+/ald+/eDBw4\nELPZzK1bt5gwYQKenp6MHj2aWbNmERsbS0REROZg0h0kRJaSkrQBaIsXw2+/PagftGyZuX6glGL8\n+M+ZNm2s3aZ8F47H5jWBL774gkqVKhESEpLp7qDKlStb3fm1a9do1aoVp06dyvS4p6cne/fuxcXF\nhcTERFq1asXp06fz9UaEKIpiYyEqSmsQ4EH9oG5dWLlyAy++uJHIyC6EhgbrG1QUGJvXBEqXLs3b\nb79Nq1atLF1BzZo1y9HOT506hZubG/369cPb25sXXniB5ORkEhIScHFxAcDV1ZWrBTFJewEzcr+i\nkbND0cpfty5MmgQnT2oNweXL4OMTRdmy3Rk5cgfJyTMYP347jRp1Z968KPuFfkhROv6FgdVxAtOn\nT+fMmTO4urrmeudms5l9+/YRERFB8+bNGT16NFOnTs3x88PDw/Hw8ADA2dkZPz8/AgMDgQd/KEfd\nPnTokEPlke3Cvf3zz9r2V18FMmPG8wwZcoEffjgMmLh40UxYWHueeqoGGfTOK9u2246JiWHhwoUA\nlvNlbljtDuratSs//PADpUuXzvXO4+PjadeuHXFxcQDs3LmTKVOmcPbsWXbv3o2rqysJCQkEBARI\nd5AQNpTRFVStmom4ODPlynWlfv1gRo6EPn2ggJYKFzrI7bnT6pVAqVKl8PHx4emnn840gdyXX35p\ndee1atXC1dWV//u//+Opp57ip59+wsvLi/r16xMVFcXo0aOJiooiJCQkx4GFENadOhVPZGQXevfu\nzKpVmzh5Mh4vL22KirffhmHD4NVXoXZtvZMKvVm9Esi4zMi4u0AphclkYsiQITl6gcOHDzN8+HBS\nUlKoU6cO3377LUop+vfvz5UrV6hatSorVqzA2dk5czCDXwnExMRYLt2MxsjZQfJbc/Kk1hhERWnz\nF732GjzzjO1WRpPjry+bXwmEh4fnJw+NGzdm3759jzy+efPmfO1XCJE39etDRAR8/LE2MnnsWG1m\n0xEjIDwcKlXSO6EoSNleCXTr1o3w8HC6devGE088kelnKSkprFmzhn/961+sX7/ePsEMfiUghFEo\nBbt2wVdfQXS0VjMYORL8/PROJvLCZuMErl69yuzZs1m5ciXFihWjWrVqKKW4fPky9+/fp3///owc\nORI3Nzebhc8UTBoBIQrclSswfz7MnQu1aiGFZAOyywRyly9f5vfffwegTp06VK1aNe8JcxrM4I2A\nkfsVjZwdJL8t3L8Pa9ZotYMjR3JXSHaE/Plh9Pw2HywGkJycTFJSEi1btqRixYokJyfnOaAQwvEV\nLw7PPQebN8P27XD7NjRpAs8+q62BYDbrnVDYitUrgS+//JJ//etfJCUlcebMGWJjYxk6dKhlsILd\nghn8SkCIwub2ba2Q/NVXWiH5tddgyBApJDsam18JfP311+zatYsKFSoAULduXW44+ly2QgibK1sW\nXn4ZDh2CyEjYuxf+8hd46SXtMWFMVhuBkiVLZpo4zmw2kyrz11pl7yslezJydpD89mYyaWsbLFkC\n//2vNrV1jx7QurV2pbBpU4zeEfPF0Y+/rVltBNq1a8ff/vY3UlJS2LZtG4MGDZIRvkIIANzdYcIE\nbTbTsWNh4ULo3x/eew/OndM7ncgJqzWB+/fvM2fOHDZt2gRAcHAwI0eOxMlWwwuzCyY1ASEMyd4j\nksXjyRrDQgiHkFUhOTwc/jRDjLAxmxWGfXx8sv3y9fW1SdjCzMj9ikbODpJfbxn5syok163r+IVk\nox//3Mp27qA1a9YAMGfOHIoXL87AgQNRSrF8+XLu379fYAGFEMaWUUhu0+bBiOQePWREsqOw2h3U\nvHnzRyaAa9GiBXv37rVvMOkOEqLQenhE8tGj2ojkV16Rqa1twebjBG7dusV//vMfy/bu3bu5detW\n3tIJIQSZRyTHxMCtWw9GJG/eLCOSC5LVRmDBggWEh4dTp04d6tSpw9ChQ1mwYEFBZDM0I/crGjk7\nSH695TZ/gwba1NbnzkFICIwZoz02axYkJdkn4+MY/fjnltVGICAggJMnT7Jv3z5+/fVXfvvtN1q1\nalUQ2YQQRYhRC8lGl21NYPHixQwePJjp06db+pge/vftt9+2bzCpCQhR5D08tXXt2tptplJIfjyb\n1QRSUlIAbQbR5ORkbt26ZfleZhEVQhSEh0ckjxmjjUiuU0d7TEYk24YMFrMTI89JbuTsIPn1Zu/8\n//0vfP31gxHJI0dCp06yRnIGm98d9M4773D79m1SU1Pp2LEjzs7OREZG5vgFPDw88PX1pUmTJrRo\n0QKA69evExQUhK+vL8HBwSTpUf0RQhiSoxWSDU9Z0bhxY6WUUitXrlTDhg1TSUlJysfHx9rTLDw8\nPNS1a9cyPTZq1Cg1c+ZMpZRSM2fOVG+88cYjz8tBNCGEUGazUjt3KjVwoFLOzkoNH67UwYN//h2z\nGjfuU2U2m/UJWYBye+60eiWQlpYGwPr16wkNDaVixYoUK1Ystw1Npu3169czePBgAMLCwli3bl2u\n9ieEEBkentr6t98eTG3dpo02d9G9e/D99xuZM+cSq1Zt0juuw7HaCISEhODt7c2BAwfo1KkT165d\no3jxbGebeITJZLJ0/cyePRuAhIQEXFxcAHB1deXq1at5jO+4jHyvsZGzg+TXm575q1bNXEj+6KMo\nypbtziuv7CA5eQbjx2+nUaPuzJsXle0+jH78c8vq2fzzzz9n7NixuLi4UKxYMUqXLs3q1atz/AK7\nd++mSpUqJCQk0KVLFxo0aJDj54aHh+Ph4QGAs7Mzfn5+loJNxh/KUbcP/e/GZkfJI9uyXZS2d+6M\noVIlOHHieSIiXBg/fjHwM8nJZv7+91G4uJQi5qECsN5587MdExPDwoULASzny9wo0LuDpk2bBsD8\n+fPZs2cPrq6uJCQkEBAQwOnTpzMHM/jdQUIIx7By5QZefHEjFSqYuHDBzGefdWXs2GC9Y9mNze8O\nyo+UlBTLeIPbt2+zYcMGGjVqREhICFFR2uVYVFSUrFQmhLCbU6fiiYzsQnz8dMaO7cqHH8azZ4/e\nqRyI7WvTD5w9e1b5+vqqxo0bq3r16qlJkyYppZS6du2aeuaZZ5SPj48KCgpSN27ceOS5do5md9u2\nbdM7Qp4ZObtSkl9vjp5/7Vql3NyU2rEj6587en5rcnvuzHmFNw/q1q3L4cOHH3m8cuXKbN682Z4v\nLYQQWerWTRto1rs3LF8OTz+tdyJ9yYhhIUSRtG0b9Oun3UbaubPeaWzHoWoCQgjhqJ5+Gn74AcLC\noCgPVcpRI/DTTz8xf/58ABITE4mNjbVrqMIg4xYuIzJydpD8ejNS/rZttRXOXnxRaxDAWPltwWpN\nYPz48RxOQbOnAAAgAElEQVQ7doyTJ08yfPhw0tPTGTBgAHukvC6EKARatoToaG0eotRUbebSosRq\nTcDLy4vjx4/TtGlTDh48CICfn59lMJTdgklNQAhRgI4cgS5d4NNP4X+z2hhSbs+dVq8ESpQogZPT\ng16ju3fvkpqamrd0QgjhoHx94aefIChIuyIYNkzvRAXDak2gT58+vPLKKyQlJbFgwQKCgoIYMmRI\nQWQzNCP3Kxo5O0h+vRk5f8OG8MknMUyeDHPm6J2mYFi9Enj//fdZvXo1JUqU4MCBA/z1r3+lR48e\nBZFNCCEKXK1aEBOjLVSTmgqjR+udyL5knIAQQmTh3Dno2FFb6H7cOL3T5JzNxwksWbIEDw8PypUr\nR/ny5SlfvjwVKlTIV0ghhHB0tWvDzz9DZCRMmQKF9TOp1Ubg3XffJTo6OtNC8zdv3iyIbIZm5H5R\nI2cHya+3wpS/Rg2ta2jFCpg4sXA2BFYbAQ8PD7y8vAoiixBCOJyqVbUpJtatg7FjC19DYLUm8Oab\nb3L16lV69uxJyZIltSeZTPTu3du+waQmIIRwINevQ3AwtGqlLXTv5KCT7uT23Gm1EQgPD7fs+GGR\nkZG5T5cL0ggIIRzNH39A167g7Q1z5zpmQ2DzRkAvRm8EHl66zmiMnB0kv94Ke/7kZOjeHerWhW++\ngWLFCi5bTtj87qC4uDi6du1KhQoVqFChAt26dSMuLi4/GYUQwrDKl4f16+H8eW16ifv39U6UP1av\nBNq2bcvLL7/MwIEDAVi2bBnz5s1j586d9g1m8CsBIUThdueOtjBN2bKwZAn8r2SqO5t3BzVu3PiR\n1cF8fX05cuRI3hLmNJg0AkIIB3fvnrYwjVLw3XdQqpTeiezQHVS2bFmWLl1Keno66enpLF26lPLl\ny+crZFFg5HuljZwdJL/eilL+UqUenPx79dKuDozGaiOwePFiIiMjcXZ2plKlSvzrX/9i0aJFOX6B\n9PR0mjRpYplv6Pr16wQFBeHr60twcDBJSUl5Ty+EEDorWRKWLgUXF61gfPu23olyx+53B82YMYNf\nf/2V5ORkVq9ezeuvv46npyejR49m1qxZxMbGEhER8Wgw6Q4SQhhIejoMHw5nzmgDy8qVU4wf/znT\npo195BZ7e3KoNYbPnz/P+vXrGT58uCXU+vXrGfy/FRvCwsJYV5QX9xRCFBrFimm3jHp5aQvXL1q0\nkTlzLrFq1Sa9oz2WXRuBt956i88//zzTojQJCQm4uLgA4OrqytWrV+0ZQTdG7hc1cnaQ/Horyvmd\nnMDfP4r/+7/uvPLKDpKTZzB+/HYaNerOvHlRtgtpQ1bXE8irtWvXUqVKFZo0aZLngxoeHo6HhwcA\nzs7O+Pn5WQZxZOzTUbczlt90lDyyLduyXTDbL7/8PBcvXuCjjw4DJu7eNfP88+156qkaZLDl68XE\nxLBw4UIAy/kyN+xWE3jvvfdYvHgxxYsX5+7du9y8eZPevXuza9cu9uzZg6urKwkJCQQEBHD69OlH\ng0lNQAhhUF9/vYHXXtuIl5eJ8+fNREZ2JTQ0uEBe22FqAh9//DHx8fHExsaybNkyOnbsyOLFiwkJ\nCSEqSrssioqKIiQkxF4RhBBCF6tXx9OpUxeOH59OZGRXTp2K1ztStgps+qOM6vjkyZNZt24dvr6+\nREdHM2XKlIKKUKAyLteMyMjZQfLrTfJDQsJLjB8fjMlkIjQ0mHffHZ7/YHZitSZw79491qxZQ3x8\nPGazGdBO6G+//XaOX6RDhw506NABgMqVK7N58+Y8xhVCCMd26pQ2r5BR5tCzWhPo1KkTFStWxMfH\nJ9NdPh988IF9g0lNQAhhQB99BJcvw+zZ+rx+bs+dVq8EEhIS2LJlS75CCSFEUbFsmbbWgFFYrQl0\n7txZum/ywMj9okbODpJfb0U5/7Fj2sIzrVvbLo+9Wb0SaN26Nb169cJsNlOiRAlAu9yQxeaFECKz\n5cuhf3/HXHEsO1ZrAh4eHqxevRpvb+9MNQF7k5qAEMJIlIKnntLWFmjeXL8cNq8J1K1bFx8fnwKd\nAEkIIYzm4EEwm6FZM72T5I7Vj/a1a9cmMDCQadOmMX36dKZPn86MGTMKIpuhGblf1MjZQfLrrajm\nX7YMBgwAo31eztGVQN26dUlNTSU1NRWllFwVCCHEQ8xmrR6wdq3eSXIvx3MHJSYmAtrMnwVBagJC\nCKPYtQteekm7O0jvz8g2nzvowIEDNGzYEH9/f/z9/WnUqBEHDhzIV0ghhChMMu4K0rsByAurjcBL\nL73E3LlzOXfuHOfOnWPu3Lm89NJLBZHN0IzcL2rk7CD59VbU8qenw4oVWiNgRFYbgdTUVNq3b2/Z\nbteuHWlpaXYNJYQQRrF9O1SrBvXr650kb6zWBIKDgwkMDGTgwIEopVi2bBkxMTFs3LjRvsGkJiCE\nMIBXXgFPT/jrX/VOosntudNqI3Dt2jXGjx/PL7/8AmhXAn/7298sS0TaizQCQghHl5YG1avDvn2Q\nh0W97MKmheH09HT69evHP/7xD44fP87x48eZO3eu3RuAwsDI/aJGzg6SX29FKf+WLfDkk47TAOTF\nYxuBYsWKUbx4cZKTkwsqjxBCGEbGADEjs9od1LNnTw4ePEhQUBBly5bVnmQy8eWXX9o3mHQHCSEc\n2N27WlfQsWPav47C5nMHhYaG0rt370w7lxHDQoiibuNGaNzYsRqAvMi2O6hTp04AHD9+nPDwcMLD\nwxkyZIjlX/F4Ru4XNXJ2kPx6Kyr5ly0z7tiAh2V7JRAfH8+uXbtYvXo1A7Lo9PL393/sju/evUu7\ndu24f/8+t2/fplu3bsycOZPr16/Tv39/rly5QrVq1Vi+fDnOzs75fydCCFFAbt+G9evBzr3iBSLb\nmsDy5cuJjIzkl19+oVkWc6Nu27bN6s7v3LlDmTJluH//Pm3btmXatGmsWrUKT09PRo8ezaxZs4iN\njSUiIuLRYFITEEI4IKUUzz77OXfvjmXjRsfrGrf5OIEpU6bw/vvv5ytUSkoKHTp0YOHChfTs2ZO9\ne/fi4uJCYmIirVq14vTp048Gk0ZACOGAVq7cwMCBG3nllS7Mnh2sd5xH2HwCufw0AGazGT8/P9zd\n3Xn66adp1KgRCQkJlnEGrq6uXL16Nc/7d2RG7hc1cnaQ/HorrPnnzYuiUaPuvPvuDu7fn8GGDdtp\n1Kg78+ZFFWxAG7N6d1B+ODk5cejQIf744w+Cg4Nz1IX0sPDwcDz+NwrD2dkZPz8/AgMDgQd/KEfd\nPnTokEPlkW3Zlu38bT/1VA3Gjh3JK69sB37m5s1Y5swZRWhosK75YmJiWLhwIYDlfJkbOV5PIL+m\nTp1KiRIl+Oc//8mePXtwdXUlISGBgIAA6Q4SQji869ehefMNxMdvpF49E/HxZiIjuxIa6lhdQjbv\nDsqra9euWUYa37lzh82bN+Pj40NISAhRUdrlU1RUFCEhIfaKIIQQNpGQAJ06QY0a8SxZ0oVjx6YT\nGdmVU6fi9Y6Wf8pOjhw5ovz8/FTjxo1V/fr11eTJk5VSSl27dk0988wzysfHRwUFBakbN25k+Xw7\nRisQ27Zt0ztCnhk5u1KSX2+FLf+lS0o1aqTUhAlKmc36ZMqN3J477VYT8PHx4eDBg488XrlyZTZv\n3myvlxVCCJu5cEG7Anj+eZg0Se809pGjmsCpU6c4e/YswcHB3Llzh7S0NCpUqGDfYFITEELo6Nw5\n6NgRXn7ZcdYKyAmb1wS+/PJLBgwYwGuvvQbA5cuX6dmzZ94TCiGEgzt7Fjp0gFGjjNUA5IXVRuDr\nr79m165dlk/+devW5caNG3YPZnQZt3AZkZGzg+TXm9HzL14cQ2CgdvIfPVrvNPZntSZQsmRJSpUq\nZdk2m82kpqbaNZQQQujhxAl46y347DN48UW90xQMqzWBUaNGUa1aNRYtWsTcuXOZN28eNWrUYPr0\n6fYNJjUBIUQBOnIEunTRGoCwML3T5J3N5w66f/8+c+bMYdOmTYC28PzIkSNxcrLbEAMtmDQCQogC\ncuAAhIRos4L266d3mvyxeWH43r17jBw5krVr17J27Vpee+017t69m6+QRYGR+0WNnB0kv96Mln/P\nHujaFebO1RoAo+XPL6uNQGBgYKYawN27d+nYsaNdQwkhREHYuRN69IAFC+DZZ/VOow+r3UF+fn6W\nydAe95jNg0l3kBDCjrZt01YGi4qCzp31TmM7Nu8OKl68OIcPH7ZsHzp0yO71ACGEsKdNm7QGYMWK\nwtUA5IXVs3lERATdunWjbdu2tG3blu7du/P3v/+9ILIZmpH7FY2cHSS/3hw9/7p12t0/P/wA/5uZ\nORNHz29rVscJtGnThjNnznDkyBFMJhO+vr6ULFmyILIJIYRN/fADvPoqrFkDLVvqncYxWK0JKKXY\nvn07586dw2w2YzJpa2q+8MIL9g0mNQEhhA0tXw5vvqktEO/vr3ca+8ntudPqlUC/fv24cOECfn5+\nFCtWzPK4vRsBIYSwlcWLYdw42LwZfHz0TuNgrM01Xa9ePWXWYRLtHERzaEaeU93I2ZWS/HpztPzz\n5ytVvbpSx4/n7PcdLX9u5fbcabUw7O/vX2gXgxdCFG5z5sDkyRATAw0b6p3GMVmtCQQGBnLo0CFa\ntGhhmUjOZDKxevVq+waTmoAQIh9mzYKICNi6FerW1TtNwbF5TeDDDz/MTx4hhChwn34K//wn/Pwz\n1K6tdxrHlqNpI7L6Eo9n5HuNjZwdJL/e9MyvFEyZApGReW8AjH78c8tqI/Dzzz/j6+tL6dKlKVGi\nBE5OTjleWjI+Pp727dvj4+ND/fr1+eyzzwC4fv06QUFB+Pr6EhwcTFJSUv7ehRCiyFMKJk7URgH/\n/DPUqKF3ImOwWhPw9vbmhx9+oF+/fuzfv58lS5Zw/PhxPvnkE6s7v3LlCgkJCXh7e3Pr1i38/f35\n7rvvmD9/Pp6enowePZpZs2YRGxtLRERE5mBSExBC5IBSivHjPyctbSxbtpjYvBnc3PROpR+bzx1U\nokQJ6tWrR2pqKsWKFWPw4MFs3rw5Rzt3d3fH29sbgHLlyuHr68uFCxdYv349gwcPBiAsLIx169bl\nOLAQQjxs5cqNzJhxiR9/3MTWrUW7AcgLq41AuXLlSEtLw9vbm3HjxjFjxgxSUlJy/UJxcXHs27eP\ntm3bkpCQgIuLCwCurq6F8hZUI/crGjk7SH69FVT+efOi8PLqzvDhO0hLm4HJtJ127bozb15UvvZr\n9OOfW1bvDoqKiiI9PZ05c+Ywffp0zp8/n+vbQ2/dukWfPn2IiIjIcT0BIDw8HA8PDwCcnZ3x8/Oz\nFKUz/lCOup0x1baj5JFt2S5M29u2xfD77zW4cmUk9+9vB37m5s1Y5swZRWhosO75CnI7JiaGhQsX\nAljOl7lhtSYQERHBm2++afWx7KSlpdG9e3e6dOnCW2+9BYCnpyd79uzB1dWVhIQEAgICOH36dOZg\nUhMQQmRh/3544w1ITYXnntvAp59upFYtE/HxZiIjuxIaGqx3RF3ZvCaQ0cI8bP78+TnauVKKYcOG\n0bBhQ0sDABASEkJUlHbJFhUVRUhISA7jCiGKqqtXYfhw6N4dXnxRWxbSySmeyMguHDs2ncjIrpw6\nFa93TMPJ9kpg6dKlLFmyhB07dtCuXTvL4ykpKaSmprJjxw6rO9+5cyft27fH19fXMvvotGnTaNGi\nBf379+fKlStUrVqVFStW4OzsnDmYwa8EYmJiLJduRmPk7CD59Wbr/GlpMHs2/O1v8MIL8P778KfT\nhU0Z/fjbbMRw69atqVatGgkJCYwZM8ay0yeeeAI/P78c7bxt27aYzeYsf5bTO4yEEEXXpk3a9M+1\na8OOHeDlpXeiwsdqTSA5OZknnniCYsWKcfLkSY4fP063bt0s8wjZLZjBrwSEEHl35gy8/TYcOwYz\nZ2qLwf+vM0FYYfOaQIcOHbh//z7x8fF07tyZpUuXEh4enp+MQgiRpVu34L33oEULaNUKjh+Hnj2l\nAbAnq42AUopSpUrxww8/MGrUKL777jtOnDhRENkMLeMWLiMycnaQ/HrLS36lICoKGjSAc+fgyBEY\nPx5Kl7Z9PmuMfvxzy+o4AYB9+/axdOlSy11B0k0jhLCVX3/Vbvm8d0+b96d1a70TFS1WawJbtmxh\nxowZtG/fnnHjxhEXF8cXX3zB7Nmz7RtMagJCFGpXr8KECdqi7x99BEOHwkMr2Io8yu2502ojoBdp\nBIQonDJu+fz4Yxg82P63fBY1NisMZ4wI7tGjxyNfPXv2zH/SQs7I/YpGzg6SX2+Py79pE/j6woYN\nsH07zJjheA2A0Y9/bmVbE3jhhRcAeOeddx75mUlK9UKIXMi45fP4ce3EL7d8Oo4cdQclJCQA4FaA\nc7RKd5AQxnfrltbtM28ejBkDb72lzx0/RYnNuoOUUnz44Ye4urri6+uLj48Pbm5uTJ482SZBhRCF\nl1Lw7beOccuneLxsG4GZM2eyf/9+jhw5wqVLl7h8+TKHDx/m119/ZcaMGQWZ0ZCM3K9o5Owg+fU2\nb14MbdtqI31XrNDu/zfSUo9GP/65lW0j8O233xIVFUX16tUtj1WvXp1Fixbx7bffFkg4IYRxXL0K\nL72kfeIfOlSb5VPu+Xd82dYE/P39OXDgQJZPetzPbBZMagJCGILc8ulYbDaL6ON2IidnIQRknuVz\n+3aZ5dOIsu0OOnLkCOXLl8/y6+jRowWZ0ZCM3K9o5Owg+QvCmTPQqxe89hp8+ql2339GA2CE/I9j\n9Py5le2VQHp6ekHmEEIYQMYtn//4B7zzDixfLnf8GJ1MGyGEsEopWLIExo2Dp5+GTz4x1h0/RYnN\nagJCCAEyy2dhZ3U9gfx48cUXcXd3x8fHx/LY9evXCQoKwtfXl+DgYJKSkuwZQTdG7lc0cnaQ/LaS\ncctnt265u+XTUfLnldHz55ZdG4GhQ4eyYcOGTI998MEHdOvWjSNHjtC1a1c++OADe0YQQuRSWhrM\nmgWNGkH58vDf/8Lw4TLNc2Fl95pAXFwcPXr0sNxR5Onpyd69e3FxcSExMZFWrVpx+vTpR4NJTUCI\nAqGUYvz4z5k2bSybN5sYPRpq1dIaArnl03gcviaQkJCAi4sLAK6urly9erWgIwghHvL99xuZPfsS\nW7du4vr1YJnls4ixa3dQUWbkfkUjZwfJb01SEhw8CCNGRFG1aneGDdvB7dszOHt2OyVKdOfSpah8\nNQBy/I2lwK8E3NzcSExMxNXVlYSEBKpUqZLt74aHh+Ph4QGAs7Mzfn5+BAYGAg/+UI66fejQIYfK\nI9tFZzs5Gb77LoZLl6B8+UBiY2HfvhguX4bExEDMZnBzi8HdvQZNm45k167twM84OcUydeooQkOD\nHer9yPbjt2NiYli4cCGA5XyZGwVeE3j99dfx9PRk9OjRzJw5k9jYWL788stHg0lNQIgspaTA779D\nbCzExT3675074OEBdetm/W+lSg+6elau3MCLL26kVi0T8fFmIiO7EhoarNM7E7bgUDWBgQMH8vPP\nP5OYmEitWrWYMmUKkydPpn///ixYsICqVauyYsUKe0YQwnDu3dNO8lmd4GNj4eZNqFNHO6FnnNyb\nNXtwkndzy3l//qlT8URGdqF3786sWrWJU6fi7fW2hIOSEcN2EhMTY7l0MxojZwfHz5+WBvHxD07s\nfz7JX70aQ506gdl+mnd3BycHruY5+vG3xuj5HepKQIiiKD0dLlzIvrvm8mWoVi3zib1z5wff/9//\nQadOur4FUYTIlYAQuWQ2w6VLWZ/g4+Lg/HmtSya7PvmaNaFECR3fgCjUcnvulEZAiD9RSpsyIbs+\n+XPntOJqVid4Dw9tbv1SpXR8A6JIk0bAQRi5X9HI2cF6fqXg+vXsu2vi4qBs2ezvsKlTB8qU0S+/\no5P8+pKagBBoA6KyKrpm/Fu8eOYTe4MG0LWrtl2njjZnjhBFgVwJCEO6dSv7E3xcHNy/n32fvIeH\nrIErCi/pDhKFwp072X+Sj4uD27cfPyCqcmWZ+0YUTdIIOAgj9ysWRPZ797QCa3af5pOSHh0Q9fC/\nVapkf5I38rEHya83o+eXmoBwCGlp2q2S2XXXJCRot0o+fGLv3v3BdtWqjj0gSojCQq4ERJ5kDIjK\nrsvm0iXtRP5wP/zDn+arV9eKs0II25LuIGETZrM2sjW77prz58HVNfs++Vq1ZECUEHqQRsBBOHq/\nolJal0xWRdfjx2NITAykYsVH76rJ+L52bShdWsc38BiOfuytkfz6Mnp+qQkIQDvJ37jx+AFRZcpk\nPrH7+kLPnlrj0LcvPPGEnu9ACFEQ5ErAwP744/H3yjs5ZX2PfMb3MiBKiMJHuoMKkYwBUX/+BJ/x\nfWpq9n3ydevKgCghiiJpBBxETvoV79x5/OIht249fkCUi4t9BkQZvU9U8utL8utLagIOJDVVGxCV\n3eIhN25od9E8fHJ/7rkH2+7uMupVCGFfciWQD/fvP35A1NWrUKNG9p/mq1WTAVFCCNuS7iAbSk+H\nixez7665dEn7tJ7dSb5GDRkQJYQoWIZpBDZs2MDYsWNJT09nyJAhjBs3LnOwAmgEzGa4ciX77pr4\neK3f/XEDokqWzHrfRu5XNHJ2kPx6k/z6MkRN4N69e4wYMYKdO3fi7u5OQEAAnTt3pkmTJjZ9HaUg\nMTH77prff4cKFTKf2Js2hT59Hswrn9cBUYcOHTLsfyQjZwfJrzfJbyy6NAJ79uyhUaNG1KhRA4D+\n/fuzbt26RxoBpRSmx1RGMwZEZTcYKi5OW+bv4ZO8t7c2UVnGClFly9rnPSYlJdlnxwXAyNlB8utN\n8huLLo3A+fPnqVWrlmW7Zs2axMTEPPJ7q1ZtIigo+LEDoiDzQKh69SAo6MFjFSrY+90IIYRx6dII\nPO7T/cP69duOUn+natUB+PuHWU7s7dtnHhDliLdRxmW0UAZk5Owg+fUm+Y1Fl8Lwjh07+PTTT1m7\ndi0An3/+OampqUyYMOFBMNOTwJmCjiaEEIbm6enJ6dOnc/z7ujQCd+/epUGDBvzyyy9UqVKF1q1b\nM2/ePPz9/Qs6ihBCFGm6dAeVLl2ar7/+muDgYMxmM4MHD5YGQAghdOCwg8WEEELYn8NNWrBhwwZ8\nfHxo2LAhn376qd5xcs3DwwNfX1+aNGlCixYt9I5j1Ysvvoi7uzs+Pj6Wx65fv05QUBC+vr4EBwc7\n9C1zWeX/8MMPqVmzJk2aNKFJkyZs2LBBx4TZi4+Pp3379vj4+FC/fn0+++wzwDjHP7v8Rjn+d+/e\npXnz5jRp0oSnnnqKt956CzDO8c8uf66Pv3Igd+/eVR4eHur8+fMqLS1NNWvWTB04cEDvWLni4eGh\nrl27pneMHNu+fbs6cOCA8vb2tjw2atQoNXPmTKWUUjNnzlRvvPGGXvGsyir/hx9+qKZPn65jqpy5\nfPmyOnr0qFJKqeTkZFWvXj116NAhwxz/7PIb5fgrpVRKSopSSqm0tDTVsmVLtXXrVsMcf6Wyzp/b\n4+9QVwIPDyIrXry4ZRCZ0SgD9bC1a9eOSpUqZXps/fr1DB48GICwsDCH/htklR+M8Tdwd3fH29sb\ngHLlyuHr68uFCxcMc/yzyw/GOP4AZcqUASA1NZX09HSqVKlimOMPj+Z3d3cHcnf8HaoRyGoQ2fnz\n53VMlHsmk8lyKTl79my94+RJQkICLi4uALi6unL16lWdE+XeV199hZeXF2FhYVy/fl3vOFbFxcWx\nb98+2rZta8jjn5G/Xbt2gHGOv9lsxs/PD3d3d55++mkaNWpkqOP/5/wNGzYEcnf8HaoRyOkgMke2\ne/duDhw4wJYtW4iMjOSnn37SO1KRM3LkSM6cOcOJEyfw9PTkjTfe0DvSY926dYs+ffoQERFBBQMO\ncb916xZ9+/YlIiKC8uXLG+r4Ozk5cejQIc6fP8/27dvZtm2b3pFy5c/5Y2Jicn38HaoRqFmzJvHx\n8Zbt+Pj4TFcGRlClShUA3Nzc6NOnD/v27dM5Ue65ubmRmJgIaFcFGe/JKFxdXTGZTJhMJl555RWH\n/hukpaURGhrK888/z7PPPgsY6/hn5B80aJAlv5GOf4aKFSvSrVs39uzZY6jjnyEj/+7du3N9/B2q\nEWjevDnHjh3jwoULpKWlsWLFCrp27ap3rBxLSUkhJSUFgNu3b7NhwwYaNWqkc6rcCwkJISoqCoCo\nqChCQkJ0TpQ7D1++f//99w77N1BKMWzYMBo2bGi5swOMc/yzy2+U43/t2jWSk5MBuHPnDps3b8bH\nx8cwxz+7/AkJCZbfydHxt329On/Wr1+vGjVqpLy8vNTHH3+sd5xcOXv2rPL19VWNGzdW9erVU5Mm\nTdI7klUDBgxQ1apVUyVKlFA1a9ZUCxYsUNeuXVPPPPOM8vHxUUFBQerGjRt6x8zWn/N/8803Kiws\nTPn6+qoGDRqo4OBgdf78eb1jZmnHjh3KZDKpxo0bKz8/P+Xn56eio6MNc/yzyr9+/XrDHP8jR44o\nPz8/1bhxY1W/fn01efJkpZQyzPHPLn9uj78MFhNCiCLMobqDhBBCFCxpBIQQogiTRkAIIYowaQSE\nEKIIk0ZACCGKMGkEhBCiCJNGQBhCx44d2bRpU6bHZs2axWuvvZbtcwIDA/n1119z/Vpr1qyxTGP+\n448/8ttvv+V6Hw+bPXs2CxcuzPXzXn31VXbt2pXlz1avXs3UqVPzlUsIkEZAGMTAgQNZtmxZpseW\nL1/OoEGDsn1OxtD53OrRowfjxo0DtEbgxIkTud5HBqUU33zzDWFhYbl+7p49ewgICMg24/fff09a\nWlqeswkB0ggIgwgNDWXdunXcv38f0GatvHjxIm3btmX16tU0bdoUHx8fevXqZRlK/7DIyEgaNmxI\nw4YNGT16tOXxH3/80bIIUKdOnQBYuHAhr7/+Ov/5z39Ys2YNY8eOxd/fn7Nnz9K0aVPLc0+dOpVp\nO2SUh1wAAAQGSURBVCu//PILDRo0oHhxbSXXwMBA3n77bVq1aoWXlxf79u0jNDQUT09PS8MD8Ntv\nv/HUU09hMpmYOXMmjRo1ws/Pj/79+wNaAxcQEPDI1ZEQuSWNgDCEypUr06JFC9avXw/AsmXL6N+/\nP1euXOGTTz5h586dHD16lNatWz+yIt25c+eYNGkSu3bt4tixYxw/fpzly5dz6dIlRowYQXR0NAcP\nHuSHH34AHsxmGxAQQM+ePfniiy84cOAAf/nLX6hYsSKHDx8GtIblxRdffGzunTt30qxZM8u2yWSi\nTJky7N69mxEjRtCrVy/mzZvHb7/9RlRUlGXel+joaMu8WV988QWHDh3i0KFDLFiwwLKvFi1asH37\n9vwcViGkERDG8XCX0PLlyxk4cCA7duzg1KlTtG7dmiZNmrBo0SIuXrxoeY5Sit27d/PMM8/g7OyM\nk5OT5Xm//PILnTp1okaNGgDZTuP88Mwqw4cPJzIyErPZzIoVKx7bHQVaA1StWrVMj3Xv3h0Ab29v\nvL29cXV1pWTJkjz55JOWRVk2bdpEly5dAPD19SUsLIzFixdnylK9enXi4uJycuiEyJY0AsIwevbs\nyZYtWzh48CApKSk0adIEgK5du3Lw4EEOHjzI8ePHM31aBu3T98Mnz9xOl/VwXSE0NJTo6GjWrl1L\ns2bNslzV7M/+/HqlSpUCtLngM77P2DabzaSkpJCUlETVqlUBWLduHSNGjODw4cM0b94cs9kMaAuK\nFIY1OIS+pBEQhlGuXDmefvpphg4davkE3rZtW7Zt28a5c+cAbfHtM2fOWJ6T0Xe+detWkpKSLJ/g\nO3ToQLt27di6datl9bqMBcUfPmmXKVOG27dvW7ZLlSpFcHAwI0aMYOjQoVYz16lTh8uXL+f4PSql\n2LZtGx07drRsX7hwgcDAQKZNm8bNmzctOS9dukSdOnVyvG8hsiKNgDCUgQMHcvToUQYOHAhA1apV\n+cc//kHPnj3x8/OjRYsWj9zNU7NmTaZMmUJAQACNGjXCy8uLvn374u7uzpw5c+jSpQtNmjShb9++\nQOa7ivr378+UKVPw9/cnNjYWgEGDBuHk5ETnzp2t5m3bti379+/P8mfZ3b0UHR1t6Qq6f/8+AwYM\nwM/PD39/f0aOHEnlypUB2Lt3L+3bt8/JYRMiWzKVtBC5NGPGDG7cuJGj+/SVUvj7+7Nnzx5KliyZ\no/03bdqUvXv3UqxYsWx/x2w24+/vz/79+y13HgmRF9IICJELoaGhxMbGsmnTJlxdXXP0nDlz5lCm\nTJkcdR/l1OrVqzly5AgTJ0602T5F0SSNgBBCFGFSExBCiCJMGgEhhCjCpBEQQogiTBoBIYQowqQR\nEEKIIkwaASGEKML+H/RWAsao5sbZAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x3032e50>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mean velocity (m/s): 23.36\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.2, Page 106"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from pylab import *\n",
      "import numpy as np\n",
      "\n",
      " #Initializing  the  variables  all  unknowns  are  assigned  0\n",
      "\n",
      "d  =  [0.0, 0.05, 0.075, 0, 0.030];\n",
      "Q  =  [0, 0, 0, 0, 0];\n",
      "V  =  [0, 0, 2, 1.5, 0];\n",
      "A  =  [0, 0, 0, 0, 0]\n",
      " #Calculations\n",
      "A2  =  math.pi*d[2]**2/4;\n",
      "Q[2]  =A2*V[2];\n",
      "Q  =  [0,Q[2], Q[2],  Q[2]/1.5 , 0.5*Q[2]/1.5];\n",
      "d[3]  =  (Q[3]*4/(V[3]*math.pi))**0.5;\n",
      "for i in range(0,5):\n",
      "    A[i]  =  math.pi*d[i]**2/4;\n",
      "V[1]  =  V[2]*(A[2]/A[1]);\n",
      "V[4]=Q[4]/A[4];\n",
      "\n",
      "\n",
      "header  =  \"Diameter(mm)  Area(m2)\\t Flow Rate(m3/s)  Velocity(m/s)\"\n",
      "print header\n",
      "for c in range(1,5):\n",
      "    mm=str(round(d[c]*1000,1))+'\\t  '+str(round(A[c],6))+' \\t    '+str(round(Q[c],6))+'     \\t'+str(round(V[c],2))\n",
      "    print mm"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Diameter(mm)  Area(m2)\t Flow Rate(m3/s)  Velocity(m/s)\n",
        "50.0\t  0.001963 \t    0.008836     \t4.5\n",
        "75.0\t  0.004418 \t    0.008836     \t2.0\n",
        "70.7\t  0.003927 \t    0.00589     \t1.5\n",
        "30.0\t  0.000707 \t    0.002945     \t4.17\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.3, Page 108"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "import sympy\n",
      "from sympy import diff, Symbol\n",
      "\n",
      "\n",
      "#Initializing  the  variables \n",
      "'''\n",
      "def df(x, h=0.1e-5):\n",
      "    return ( f(x+h/2) - f(x-h/2) )/h\n",
      "    return df\n",
      "\n",
      "print df(2*x,h)\n",
      "'''\n",
      "x = Symbol('x') \n",
      "vx  =  3-x\n",
      "vy  =  4+2*x\n",
      "vz  =  2-x  \n",
      "\n",
      " #Calculations\n",
      "delVx  =  vx.diff(x);  \n",
      "delVy  =  vx.diff(x);\n",
      "delVz  =  vx.diff(x);  \n",
      "\n",
      "result  =  delVx+delVy+delVz;#requirement  of  continuity  equation  (result  =  0)\n",
      "print \"Satisfy requirement of continuity \"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Satisfy requirement of continuity \n"
       ]
      }
     ],
     "prompt_number": 10
    }
   ],
   "metadata": {}
  }
 ]
}