summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics/Chapter6.ipynb
blob: 0eb8031a6d13dc0069b84be4151f0ac7065d2332 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
{
 "metadata": {
  "name": "",
  "signature": "sha256:779dd4cf4a63ec7ae3b3ee56b532415f0e7430caa393646786820e5bcc3483bb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Chapter 6 : Dimensional Analysis and Dynamic Similitude"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 6.2 Page no 233"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "L = 10                          # length scale lp/l\n",
      "\n",
      "\n",
      "rhop = 0.86*998.2                 # density inn kg/m**3\n",
      "\n",
      "mup = 8*10**-3                    # viscosity in Ns/m**2\n",
      "\n",
      "Vp = 2.5                          # Velocity in m/s\n",
      "\n",
      "\n",
      "rhom = 998.2                     # density in kg/m**3\n",
      "\n",
      "mum = 1.005*10**-3               # viscosity in Ns/m**2\n",
      "\n",
      "\n",
      "Vm = Vp*L*(rhop/rhom)*(mum/mup)  # velocity in m/s\n",
      "\n",
      "print \"Hence the model should be tested at a velocity of \",round(Vm,2),\"m/s. This velocity in the model is called corresponding velocity\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Hence the model should be tested at a velocity of  2.7 m/s. This velocity in the model is called corresponding velocity\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 6.3 Page no 233"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "from __future__ import division\n",
      "\n",
      "from math import *\n",
      "\n",
      "l = 300                               # length in ft\n",
      "\n",
      "Q = 100000                            # discharge in cfs\n",
      "\n",
      "Cd = 3.8                              # coefficient of discharge\n",
      "\n",
      "L = (1/50)                              # length scale\n",
      "\n",
      "\n",
      "Qm = 100000*(L)**(5/2)                     # model discharge in cfs\n",
      "\n",
      "print \"Maximum discharge, Qm = \",round(Qm,8),\"cfs\"\n",
      "\n",
      "H = (Q/(Cd*l))**(2/3)                 # height over spill way\n",
      "\n",
      "h = H*L*12                              # head over spill model\n",
      "\n",
      "print \"Maximum head over crest = \",round(h,2),\"ft\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum discharge, Qm =  5.65685425 cfs\n",
        "Maximum head over crest =  4.74 ft\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}