1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
{
"metadata": {
"name": "",
"signature": "sha256:09f3cec4160faaa4e2a9f5ff2c23e2a27e23b91a36394dba268c313658b30c58"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 11:External Flow:Drag and Lift"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11-1, Page No:589"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"Fd=300 #Drag Force in N\n",
"A=2.07 #Frontal Aera in m^2\n",
"rho=1.204 #denisty of air in kg/m^3\n",
"V=95 #Velocity of the fluid around the body in km/h\n",
"C=3.6 #Conversion factor \n",
"\n",
"#Calculations\n",
"Cd=(2*Fd*C**2)/(rho*A*V**2) #Coefficient of Drag of the Car\n",
"\n",
"#Result\n",
"print \"The Coefficient of Drag of the Car is\",round(Cd,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Coefficient of Drag of the Car is 0.35\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11-2,Page No:599"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"W=1.85 #Width of the car in m\n",
"H=1.7 #Height of the car in m\n",
"Cd=0.3 #Drag Coefficient\n",
"rho=1.20 #Denisty of air in kg/m^3\n",
"V=95 #Velocity of the car in km/h\n",
"C=3.6 #Conversion Factor\n",
"L=18000 #Distance travelled by the car in one year in km\n",
"n_car=0.3 #Efficiency of the car in fraction\n",
"HV=44000 #Heating Value of the fuel in kJ/kg\n",
"rho_fuel=0.74 #Density of the fuel in kg/L\n",
"Unit_Cost=0.95 #Unit cost of fuel per litre in $\n",
"Hnew=1.55 #New design height in m\n",
"\n",
"#Calculation\n",
"#Drag Force before Redesigning\n",
"Fd=Cd*W*H*rho*V**2*0.5*(1/C) #Drag Force in N\n",
"W_drag=Fd*L #Work Done to overcome the drag force in kJ/year\n",
"E_in=W_drag/n_car #Energy required in kJ/year\n",
"#Amount of fuel\n",
"Amount_of_fuel=E_in/(HV*rho_fuel) #Amount of fuel required in L/year\n",
"Cost=Amount_of_fuel*Unit_Cost #Total cost per year in $/year\n",
"\n",
"#Reduction ratio\n",
"Reduction_Ratio=(H-Hnew)/H #Reduction ratio\n",
"#Fuel Reduction\n",
"Fuel_Reduction=Reduction_Ratio*Amount_of_fuel #Fuel reduced in L/year\n",
"Cost_Reduction=Reduction_Ratio*Cost #Cost Reduction in $/Year\n",
"\n",
"#Result\n",
"print \"The Reduction Ratio of the redesigned car is\",round(Reduction_Ratio,3)\n",
"print \"Therefore the cars height reduces the fuel consumption by\",round(Reduction_Ratio*100),\"%\"\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Reduction Ratio of the redesigned car is 0.088\n",
"Therefore the cars height reduces the fuel consumption by 9.0 %\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11-3,Page No:604"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"L=5 #Length on the flat plate in m\n",
"V=2 #Full stream velocity in m/s\n",
"v=2.485*10**-4 #Kinematic Viscosity in m^2/s\n",
"rho=876 #Density of the fluid in kg/m^3\n",
"\n",
"#Calculations\n",
"Rel=(V*L)/v #Reynolds Number\n",
"Cf=1.328*Rel**-0.5 #Average Friction Coefficient\n",
"\n",
"#As pressure drag is zero Cd=Cf\n",
"Fd=Cf*L*rho*V**2*0.5 #Drag Force in N\n",
"\n",
"#Result\n",
"print \"The total Drag Force per Unit Width is\",round(Fd),\"N\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The total Drag Force per Unit Width is 58.0 N\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11-4,Page No:609"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"D=0.022 #Diameter of the pipe in m\n",
"rho=999.1 #Density of the fluid in kg/m^3\n",
"u=1.138*10**-3 #Dynamic Viscosity in kg/m.s\n",
"V=4 #Velocity in m/s\n",
"Cd=1 #Coefficent of Drag\n",
"L=30 #Width of the river in m\n",
"\n",
"#Calculations\n",
"Re=(rho*V*D)/u #Reynolds Number\n",
"Fd=Cd*D*L*rho*V**2*0.5 #Drag Force in N\n",
"\n",
"#Result\n",
"print \"The drag force on the pipe is\",round(Fd),\"N\"\n",
"#The answer in the textbook has been approximated to a large value"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The drag force on the pipe is 5275.0 N\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11-5,Page No:616"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"m=70000 #Mass of the airplane in kg\n",
"g=9.81 #Acceleration due to gravity in m/s^2\n",
"V_k=558 #Velocity of the airplane in km/h\n",
"rho=1.2 #Denisty of air in kg/m^3\n",
"Cl_max1=1.52 #Coefficient of lift case 1\n",
"Cl_max2=3.48 #Coefficient of lift case 2\n",
"A=150 #Area in m^2\n",
"rho_h=0.312 #Density at crusing altitude in kg/m^3\n",
"Cd=0.03 #Coefficient of drag at crusing altitude\n",
"\n",
"#Calculations\n",
"W=m*g #Weight of the aircraft in N\n",
"V=V_k/3.6 #Velocity in m/s\n",
"\n",
"#Part (A)\n",
"V_min1=((2*W)/(rho*Cl_max1*A))**0.5 #Minimum stall speed in m/s without flap\n",
"V_min2=((2*W)/(rho*Cl_max2*A))**0.5 #Minimum stall speed in m/s with flap\n",
"V_min1_safe=1.2*V_min1 #Safe minimum velocity to avoid stall in m/s without flap\n",
"V_min2_safe=1.2*V_min2 #Safe minimum velocity to avoid stall in m/s with flap\n",
"\n",
"#Part(B)\n",
"Fl=W #Lift force required in N\n",
"Cl=(2*Fl)/(rho_h*A*V**2) #Coefficient of lift\n",
"\n",
"#Part(C)\n",
"Fd=Cd*A*rho_h*V**2*0.5*10**-3 #Drag Force in kN\n",
"Thrust=Fd #thrust Force in kN\n",
"Power=Thrust*V #Power required in kW\n",
"\n",
"#Result\n",
"print \"The safe speed limits without and with flaps are\",round(V_min1_safe,1),\"m/s and\",round(V_min2_safe,1),\"m/s\"\n",
"print \"The lift coefficient is\",round(Cl,2),\"and the corresponding angle of attack is 10\u02da\"\n",
"print \"The power required to provide enough thrust is\",round(Power),\"kW\"\n",
"#The final power answer has been rounded in the textbook"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The safe speed limits without and with flaps are 85.0 m/s and 56.2 m/s\n",
"The lift coefficient is 1.22 and the corresponding angle of attack is 10\u02da\n",
"The power required to provide enough thrust is 2614.0 kW\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 11.11-6, Page No:618"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"m=0.057 #mass of the tennis ball in kg\n",
"D=0.0637 #Diameter of the tennis ball in m\n",
"V_k=72 #Velocity with which th ball is hit in km/h\n",
"w_rpm=4800 #backspin given to the ball in rpm\n",
"Cl=0.21 #Coefficient of lift\n",
"rho=1.184 #Density of the fluid in kg/m^3\n",
"g=9.81 #Aceleration due to gravity in m/s^2\n",
"\n",
"#Calculations\n",
"V=V_k/3.6 #Velocity of the ball in m/s\n",
"w=(w_rpm*2*pi)/60 #Angular velocity in rad/s\n",
"\n",
"#non dimensional rate of rotation\n",
"#Changing the notation from the one used in the textbook to simplify\n",
"ror=(w*D)/(2*V) #Non dimnsional rate of rotation\n",
"A=4**-1*pi*D**2 #Frontal Area in m^2\n",
"Fl=Cl*A*rho*V**2*0.5 #Lift force in N\n",
"W=m*g #Weight of the ball in N\n",
"F=W-Fl #Combined force in N\n",
"\n",
"#Result\n",
"print \"The ball will drop due to a combined effect of lift and gravity with a force of\",round(W,3),\"N\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The ball will drop due to a combined effect of lift and gravity with a force of 0.559 N\n"
]
}
],
"prompt_number": 16
}
],
"metadata": {}
}
]
}
|