1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
|
{
"metadata": {
"name": "",
"signature": "sha256:e9f209a2bf5415ddf06809cb9961528b86fd396a12cb639b1f2552ce5098ec2f"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 10:Approximate Solutions of the Navier-Stokes Equation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.10-2, Page No:499"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"rho_air=0.8588 #Density of the surrounding air by gas law in kg/m^3\n",
"u=1.474*10**-5 #Dynamic Viscosity in kg/m.s\n",
"rho_particle=1240 #Density of the particle in kg/m^3\n",
"D=50*10**-6 #Diameter of the particles in m\n",
"g=9.81 #Acceleration due to gravity in m/s^2\n",
"\n",
"#Calculations\n",
"#Applying Newtons Third Law and solving for V we get\n",
"V=(D**2/(18*u))*(rho_particle-rho_air)*g #Terminal Velocity of the particle in m/s\n",
"\n",
"#Verification of Reynolds Number \n",
"Re=(rho_air*V*D)/u #Reynolds Number\n",
"\n",
"#Result\n",
"print \"The Terminal Velocity of the particles is\",round(V,3),\"m/s\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Terminal Velocity of the particles is 0.115 m/s\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.10-6,Page No:519"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"V_dot_by_L1=2 #Strength of source in line 1 in m^2/s at (0,-1)m\n",
"V_dot_by_L2=-1 #Strength of source in line 2 in m^2/s at (1,-1)m\n",
"T=1.5 #Vortex Strength in m^2/s a (1,1) m\n",
"r_vortex=1 #distance in m\n",
"r_source1=1.414 #Distance in m\n",
"r_source2=1 #Distance in m\n",
"\n",
"#Calculations\n",
"V_vortex=T/(2*pi*r_vortex) #Velocity Induced by the Vortex in m/s\n",
"V_source1=V_dot_by_L1/(2*pi*r_source1) #Velocity induced by the source1 in m/s\n",
"V_source2=V_dot_by_L2/(2*pi*r_source2) #Velocity induced by the source2 in m/s\n",
"V=V_vortex+(V_source1/2**0.5)+V_source2+(V_source1/2**0.5) #Vectorial addition of the velocities in m/s\n",
"\n",
"#Result\n",
"print \"The superposed velocity at point (1,0) is\",round(V,3),\"m/s to the right\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The superposed velocity at point (1,0) is 0.398 m/s to the right\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.10-8, Page No:526"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"V_dot=0.11 #Volumetric flow rate in m^3/s\n",
"L=0.35 #Length of flow in m\n",
"b=0.02 #m\n",
"u_star_max=0.159 #m/s\n",
"\n",
"#Calculations\n",
"V_dot_by_L=-V_dot/L #Strength of the line source in m^2/s\n",
"u_max=(-u_star_max*V_dot_by_L)/b #Umax in m/s\n",
"\n",
"#Result\n",
"print \"The strength of the line source is\",round(V_dot_by_L,3),\"m^2/s\"\n",
"print \"The maximum velocity is\",round(u_max,2),\"m/s\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The strength of the line source is -0.314 m^2/s\n",
"The maximum velocity is 2.5 m/s\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.10-9,Page No:535"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"V=10 #Velocity of fluid Flow in kh/hr\n",
"rho=999.9 #Density of water at 5\u02daC in kg/m^3\n",
"v=1.519*10**-6 #Kinematic Viscosity in m^2/s\n",
"#Conversion Factors\n",
"C1=1000\n",
"C2=3600\n",
"\n",
"#Calculations\n",
"Rex=(V*0.5*C1)/(v*C2) #Reynolds Number\n",
"\n",
"#Result\n",
"print \"The Reynolds Number is\",round(Rex)\n",
"print \"As a result the boundary layer is Transitional\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Reynolds Number is 914344.0\n",
"As a result the boundary layer is Transitional\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.10-10,Page No:541"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"V=32 #Velocity of the fluid in m/s\n",
"x=1.1 #Distance in m\n",
"v=1.7*10**-5 #Kinematic Viscosity in m^2/s\n",
"#Conversion factor\n",
"C1=1000 \n",
"C2=3600\n",
"C3=100\n",
"\n",
"#Calculations\n",
"Rex=(V*x*C1)/(v*C2) #Reynolds Number\n",
"delta=4.91*x*C3/Rex**0.5 #Thickness of boundary Layer in cm\n",
"\n",
"#Result\n",
"print \"The Thickness of the boundary Layer is\",round(delta,2),\"cm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Thickness of the boundary Layer is 0.71 cm\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.10-11, Page No:546"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable decleration\n",
"x=0.3 #Length of the tunnel in m\n",
"V=4 #Optimised speed in m/s\n",
"R=0.15 #Radius of the tunnel in m\n",
"v=1.507*10**-5 #Kinematic Viscosity in m^2/s\n",
"\n",
"#Calculations\n",
"Rex=(V*x)/v #Reynolds Number\n",
"#Using the diplacement thickness formula\n",
"delta_star=(1.72*x)/Rex**0.5 #Displacement Thickness in m\n",
"#Applying the Continuity Equation\n",
"V_end=(V*R**2)/(R-delta_star)**2 #Velocity at the end in m/s\n",
"\n",
"#Result\n",
"print \"The end velocity should be\",round(V_end,2),\"m/s\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The end velocity should be 4.1 m/s\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 10.10-12, Page No:550"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"#NOTE:The Notation has been changed here\n",
"\n",
"#Decleration of variables\n",
"V=10 #Velocity in m/s\n",
"x=1.52 #Length in m\n",
"v=1.516*10**-5 #Kinematic viscosity in m^2/s\n",
"u=[0,0.]\n",
"#Calculations\n",
"#Part(a)\n",
"\n",
"length=range(0,1500,20) #Array of length in mm\n",
"Re=(V*x)/v #Reynolds Number\n",
"y=transpose(length) #Transpose of the length matrix\n",
"#Laminar Boundary Layer\n",
"d_lam=(4.918*y)/((Re)**0.5)\n",
"#Turbulent Boundary Layer\n",
"d_tur=(0.16*y)/((Re)**(0.14285))\n",
"\n",
"#Part(b)\n",
"C_lam=0.664/((Re)**0.5) #Local Skin Friction coefficient for laminar boundary layer\n",
"C_tur=0.027/((Re)**0.14285) #Local Skin Friction coefficient for turbulent boundary Layer\n",
"\n",
"#Result\n",
"print \"The Reynolds Number is\",round(Re)\n",
"print \"The Local skin friction coefficient is\",round(C_lam,4),\"for laminar boundary layer\"\n",
"print \"The Local Skin friction coefficient is\",round(C_tur,4),\"for turbulent boundary layer\"\n",
"\n",
"plt.plot(y,d_tur,y,d_lam)\n",
"plt.xlabel('x,mm')\n",
"plt.ylabel('delta,mm')\n",
"plt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Reynolds Number is 1002639.0\n",
"The Local skin friction coefficient is 0.0007 for laminar boundary layer\n",
"The Local Skin friction coefficient is 0.0038 for turbulent boundary layer\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPX1//HXYd+XBGRVsECiVsVat1at01ZbrS2tX7vZ\nn4qg1bpV+rWi0n5rql2sfrVWbStuuLRVq7Uqtoh8LUEsqKiAESsBAQWVCGELhiUk5/fHZxKyqUmY\nO3dm8n4+Hnlw596ZuSdA5uR8VnN3RERE6usQdwAiIpJ5lBxERKQJJQcREWlCyUFERJpQchARkSaU\nHEREpInIkoOZdTOzF8xskZm9bma/Tp4vMrM1ZrYw+XViVDGIiEjbWJTzHMysh7tXmlkn4Dngx8AX\ngQp3vzGyG4uIyB6JtFnJ3SuTh12AjsDG5GOL8r4iIrJnIk0OZtbBzBYBZcBsd1+SvHSxmS02s7vM\nrF+UMYiISOtF2qxUdxOzvsBM4ArgdWBd8tI1wBB3PzvyIEREpMU6peMm7r7ZzP4BHObuxbXnzexO\nYHrj55uZFnwSEWkDd09Js32Uo5UG1DYZmVl34ARgoZkNrve0U4CS5l7v7hn/ddVVV8Ueg+JUnIpT\nMdZ+pVKUlcMQ4F4z60BIQve7+zNmdp+ZHQI4sBI4L8IYRESkDSJLDu5eAhzazPkzo7qniIikhmZI\n74FEIhF3CC2iOFNLcaZWNsSZDTGmWlpGK7WWmXkmxiUiksnMDM/0DmkREcleSg4iItKEkoOIiDSh\n5CAiIk0oOYiISBNKDiIi0oSSg4hIxJYsgb//Pe4oWkfJQUQkItXVcP31cNxxsHlz3NG0TlpWZRUR\naW+WLYOzzoLOnWHBAth337gjah1VDiIiKVRTA7fcAp/9LHznO/Cvf2VfYgBVDiIiKbNqFUycCNu2\nwb//DQUFcUfUdqocRET2kDvccQccfjiceCI891x2JwZQ5SAiskfeeQfOOQfefx9mz4YDD4w7otRQ\n5SAi0gbu8Kc/wac+BUcdBc8/nzuJAVQ5iIi0WlkZ/OAHYUTSU0/BoU22Nct+qhxERFrhkUdg7FjY\nbz94+eXcTAygykFEpEXKy+Gii+CVV+Cxx0JTUi5T5SAi8jGefBIOPhgGD4aFC3M/MYAqBxGRD7V5\nM0yaBHPmwF/+EpbBaC9UOYiINGPWrFAtdOsGr77avhIDqHIQEWlg61aYPDk0Jd15J3zpS3FHFI/I\nKgcz62ZmL5jZIjN73cx+nTyfZ2azzKzUzJ42s35RxSAi0hrPPhtGIlVWhmqhvSYGAHP36N7crIe7\nV5pZJ+A54MfAOGC9u19nZpcD/d39ikav8yjjEhGpb9s2+MlP4MEH4bbbYNy4uCNqGzPD3S0V7xVp\nn4O7VyYPuwAdgY2E5HBv8vy9wDeijEFE5KO8+GKY5fzuu1BSkr2JIdUiTQ5m1sHMFgFlwGx3XwIM\ncvey5FPKgEFRxiAi0pwdO2DKlJAMrr46VA35+XFHlTki7ZB29xrgEDPrC8w0s883uu5m1mz7UVFR\nUd1xIpEgkUhEGKmItCcLF8L48fCJT8DixTAoS39FLS4upri4OJL3jrTPocGNzP4H2AacAyTcfa2Z\nDSFUFPs1eq76HEQk5aqq4Ne/hltvhRtugNNPB0tJC31myIo+BzMbUDsSycy6AycAC4EngPHJp40H\nHosqBhGRWkuWwGc+A/PmhSUwzjgjtxJDqkXZ5zAE+Feyz+EFYLq7PwNcC5xgZqXAF5KPRUQiUV0N\n110HiQScdx7MmAHDh8cdVeZLW7NSa6hZSURSYdkyOOss6NIFpk2DkSPjjihaWdGsJCISl5oauOWW\n0Iz0ne/AM8/kfmJINS2fISI5ZdUqmDgRtm8P/QvZvpdzXFQ5iEhOcIc77oDDD4cTT4S5c5UY9oQq\nBxHJeu+8A+ecA+vWQXExfPKTcUeU/VQ5iEjWcoc//Sksf/GZz8D8+UoMqaLKQUSyUllZGJr65psw\nc2ZIEJI6qhxEJOs8/HBYWvuAA+Cll5QYoqDKQUSyRnk5XHRRmOH8+ONw5JFxR5S7VDmISFaYPj1s\n2zl4cFg4T4khWqocRCSjbd4MkybBnDnwwAPwuc/FHVH7oMpBRDLWrFlw0EHQrVvYtlOJIX1UOYhI\nxtm6FSZPhiefhDvvbN97OcdFlYOIZJRnnw0jkbZtC9WCEkM8VDmISEbYtg1+8pOwXefUqfC1r8Ud\nUfumykFEYvfCC2GuwrvvhmpBiSF+qhxEJDY7dkBRUdhr4ZZb4FvfijsiqaXkICKxWLgQzjwTRo+G\nxYth0KC4I5L61KwkImlVVQVXXw1f/nIYkfToo0oMmUiVg4ikzZIlMH48DBwYKodhw+KOSD6MKgcR\niVx1NVx3HSQSYSXVf/5TiSHTqXIQkUiVlsJZZ0HXrrBggfZyzhaqHEQkEjU1YQTSZz8L3/0uPPOM\nEkM2UeUgIim3ahVMmBCGqs6bp72cs1FklYOZ7W1ms81siZm9ZmY/TJ4vMrM1ZrYw+XViVDGISHq5\nw+23w+GHw0knwdy5SgzZKsrKoQr4kbsvMrNewMtmNgtw4EZ3vzHCe4tImq1ZA+ecA+vXQ3Gx9nLO\ndpFVDu6+1t0XJY+3Av8BascnWFT3FZH0cof77oNDDw39C/PnKzHkgrT0OZjZSOBTwPPA0cDFZnYm\n8BJwqbtvSkccIpJaZWVhaOqbb8LMmdrLOZdEnhySTUqPAJe4+1Yz+yNwdfLyNcANwNmNX1dUVFR3\nnEgkSCQSUYcqIq3w8MNw8cUwcSI89FAYqirpVVxcTHFxcSTvbe4eyRsDmFln4Elghrvf1Mz1kcB0\ndz+o0XmPMi4RabvycrjoojDD+Z574Kij4o5IapkZ7p6SZvsoRysZcBfwev3EYGZD6j3tFKAkqhhE\nJLWmT4eDD4YhQ0JyUGLIXZFVDmZ2DPAs8CphhBLAFOA04JDkuZXAee5e1ui1qhxEMsjmzTBpEsyZ\nE6oF7eWcmVJZOUTW5+Duz9F8ZTIjqnuKSOo9/XQYonryyWEjnl694o5I0kEzpEWkWRUVcNllYZG8\nu+6CE06IOyJJJ62tJCJNzJkDY8fCzp1QUqLE0B6pchCROpWVMGVKGKY6dSp89atxRyRxUeUgIgA8\n/3yYxPb++6FvQYmhfVPlINLO7dgBRUUwbRrceit885txRySZQMlBpB175ZWwbefo0bB4sfZylt3U\nrCTSDlVVwdVXw4knwuTJ8OijSgzSkCoHkXZmyRI480wYODBUDsOHxx2RZCJVDiLtRHU1XHcdJBLw\ngx/AjBlKDPLhVDmItAPLloW+hW7dYMEC7eUsH0+Vg0gOq6mBm28Om/Ccdhr83/8pMUjLqHIQyVEr\nV4a9FnbuhHnzYMyYuCOSbKLKQSTHuMPtt8MRR4TF8p59VolBWk+Vg0gOWbMmrKC6fj0UF2svZ2k7\nVQ4iOcAd7rsPDj0Ujj4a5s9XYpA9o8pBJMuVlcF558GKFTBzZlgfSWRPqXIQyWIPPxyW1j7ggDBE\nVYlBUkWVg0gWKi+HCy+ERYvg8cfhyCPjjkhyjSoHkSwzfTocfDAMHQoLFyoxSDRUOYhkiU2bYNIk\nmDsXHngAPve5uCOSXKbKQSQLzJwZqoWePcPS2koMEjVVDiIZrKICLrssLJJ3991w/PFxRyTtxcdW\nDmb2NTNbaGYbzawi+bUlHcGJtGdz5oSRSDt3hm07lRgknczdP/oJZm8CpwCvuXtNi9/YbG/gPmAv\nwIHb3f1mM8sDHgJGAKuAb7v7pkav9Y+LSyRXVVbCT34Cf/0rTJ2qvZyl5cwMd7dUvFdL+hzWAEta\nkxiSqoAfufsngaOAC81sf+AKYJa7FwDPJB+LCPD882Guwtq1oVpQYpC4tKRyOAq4GpgN7Eyedne/\nsVU3MnsMuDX5dZy7l5nZYKDY3fdr9FxVDtKu7NgBRUUwbRrceit885txRyTZKJWVQ0s6pK8BKoBu\nQJe23MTMRgKfAl4ABrl7WfJSGaCda6VdW7gwbNs5enQYiaS9nCUTtCQ5DHH3E9p6AzPrBfwNuMTd\nK8x2JzV3dzNrtkQoKiqqO04kEiQSibaGIJKRqqrgV7+C3/8ebrgBTj8dLCW/80l7UVxcTHFxcSTv\n3ZJmpeuAZ9x9Zqvf3Kwz8CQww91vSp57A0i4+1ozGwLMVrOStDevvRa27dxrL7jzThg2LO6IJBek\nu0P6AmCGmW1vzVBWCyXCXcDrtYkh6QlgfPJ4PPBYa4MWyVbV1fCb38DnPw/nnw///KcSg2Smj60c\n2vzGZscAzwKvEoayAlwJvAj8FdgHDWWVdqS0NFQL3buHCW3ay1lSLZWVQ4uSg5kdDIykXh+Fuz+a\nigA+5H5KDpIzamrgllvgmmvCiKQLLoAOWrhGIpDW0UpmNg04CFgC1J/rEFlyEMkVK1fChAmh83n+\nfO3lLNmjJaOVjgQ+qV/lRVrOHe64I8x0njwZ/vu/oWPHuKMSabmWJIcFwAGEykFEPsaaNXDOOWFD\nnjlzwi5tItmmJS2f04D5ZlZqZiXJr1ejDkwk27jDfffBoYfC0UfDvHlKDJK9WlI53AWcDrxGwz4H\nEUlauxbOOy/0Mcycqb2cJfu1pHJ4392fcPcV7r6q9ivqwESyxUMPwSGHwIEHwoIFSgySG1pSOSw0\ns78A02m48J5GK0m7tn49XHhhWA/p8ce1l7PklpZUDj2AHcCXgK8mv74WZVAime6JJ8K2ncOHh4Xz\nlBgk10Q2Q3pPaBKcZKpNm2DSJHjuubC89rHHxh2RyG7pXlup8c0vNLPvmJn2n5Z2ZebMUC306AGL\nFikxSG5rywe8AccSRjCpeUlyXkUF/PjH8NRTYU0k7eUs7UGrk4O73xpFICKZaM6csPzF5z8ftu3s\n2zfuiETSo0XJwcy+CnySsBucA7j71RHGJRKrykqYMgUefhimTtVeztL+fGyfg5lNBb4NXJw89W1g\nRJRBicRp/vwwV+H990O1oMQg7VFLdoIrcfeDzOxVdz84ue3nU+5+TGRBabSSxGDHjrCk9rRpYevO\nU0+NOyKR1knrkt3AtuSflWY2DCgHBqfi5iKZ4pVXwkY8Y8aEamGvveKOSCReLUkOT5pZf+B64OXk\nuTuiC0kkfaqq4Fe/CpXCb38L3/seWEp+7xLJbi1pVurm7ttrjwmd0ttrz0USlJqVJA1eey1UC4MG\nhb0XtJezZLt0T4KbV3vg7tuT+z3P+4jni2S0Xbvg2mvD8NTzz4d//EOJQaSxD21WMrMhwFCgh5kd\nSpj85kAfwnpLIlln6dJQLfTsCS+9BCM07k6kWR/V5/Bl4CxgGHBDvfMVwJQIYxJJuZoauOUWuOYa\n+PnPQ8XQodWLx4i0Hy3pczjV3f+Wpnhq76k+B0mZlSvDLOeqKrjnnjAiSSQXpbLP4UOTg5ldSmhG\nqm1OqrtE2M/hxlQE8CH3VnKQPeYOt98OP/0pXH45/OhH0LFj3FGJRCdd8xx60zAptJqZ3Q2cTNhN\n7qDkuSLgHGBd8mlXuvtTe3IfkcbWrIFzzgkb8syZo72cRVor0v0czOxYYCtwX73kcBVQ8VGVhyoH\naSt3uO8+uOwyuPhiuOIK6Nw57qhE0iOtM6TNrBD4AzDY3T9pZgcD49z9Fx/3Wnefa2Yjm3vb1gYq\n8nHWroVzz4W33oKnnw77OotI27RkvMYdhNFJtftHlwCn7eF9LzazxWZ2l5n128P3EuGhh2DsWDjo\nIFiwQIlBZE+1ZPmMHu7+giXXFHB3N7OqPbjnH4Ha5b6vIQyTPbvxk4qKiuqOE4kEiURiD24puWr9\nerjwwrAe0vTpcMQRcUckkj7FxcUUFxdH8t4tGco6g7Bc98Pu/ikz+yZwtruf1KIbhGal6bV9Di25\npj4HaYnHHw/zFb73vTB/oXv3uCMSiVe6V2W9CJgKFJrZu8BK4P+19YZmNsTd30s+PIXQTCXSYps2\nwSWXwHPPheYk7eUsknofN8+hvm6EPopKWjjPwcweAI4DBgBlwFVAAjiEMEx2JXCeu5c1ep0qB2nW\nzJlhiOq4cfCb30CvXnFHJJI50j3PoRA4HHgief4M4MWWvLm7N9dxfXdrAhQBqKgIw1NnzAib8Rx/\nfNwRieS2lvQ5zAW+4u4Vyce9gX+6e2TFvCoHqa+4GCZOhEQi7LnQt2/cEYlkpnT3OewF1B+dVJU8\nJxKpykqYMgUefhimTtVeziLp1JLkcB/wopk9Spi89g3g3kijknZv/nw46yw47DAoKYG8vLgjEmlf\nWrR8hpl9GjiW0AfxrLsvjDQoNSu1W9u3w1VXwb33hq07Tz017ohEske6m5Vw95fZvX+0SCRefhnO\nPBP22y9MattLjZcisdF2JxK7qiooKoKTTgp9DI88osQgErcWVQ4iUSkpCdt2Dh4MCxdqL2eRTKHK\nQWKxaxdcey184QthbaR//EOJQSSTqHKQtFu6NIxE6tEDXnoJRoyIOyIRaUyVg6RNTQ3cdBMccwyc\nfjrMmqXEIJKpVDlIWqxYARMmQHV1mMMwenTcEYnIR1HlIJFyh9tuC/ssjBsX9nNWYhDJfKocJDKr\nV8PZZ4cltufOhf33jzsiEWkpVQ6Scu5hhvOhh8Jxx8G8eUoMItlGlYOk1Nq1cO658NZbocNZezmL\nZCdVDpIyDz0EY8fCwQfDggVKDCLZTJWD7LH168NEtldfhenTQ+eziGQ3VQ6yRx5/PFQKe+8Nr7yi\nxCCSK1Q5SJts2gSXXAL//jf89a9hYpuI5A5VDtJqM2fCQQdB796weLESg0guUuUgLVZRAT/+MTz1\nFNxzD3zxi3FHJCJRUeUgLTJ7duhbqK4Oy2wrMYjkNlUO8pEqK+HKK+Fvf4OpU+Hkk+OOSETSIdLK\nwczuNrMyMyupdy7PzGaZWamZPW1m/aKMQdpu3rwwV2H9+jBMVYlBpP2IullpGnBio3NXALPcvQB4\nJvlYMsj27XD55XDqqWFDnj//GfLy4o5KRNIp0uTg7nOBjY1OjwPuTR7fC3wjyhikdV5+GQ47DJYv\nDyOR/uu/4o5IROIQR4f0IHcvSx6XAYNiiEEa2bkTrroKTjop9DE88gjstVfcUYlIXGLtkHZ3NzNv\n7lpRUVHdcSKRIJFIpCmq9qekBMaPhyFDYNEiGDo07ohEpCWKi4spLi6O5L3NvdnP5tTdwGwkMN3d\nD0o+fgNIuPtaMxsCzHb3/Rq9xqOOS2DXLrj+erjxxtC3MHEimMUdlYi0lZnh7in5KY6jcngCGA/8\nJvnnYzHE0O4tXRqqhZ494aWXtJeziDQU9VDWB4B5QKGZrTazCcC1wAlmVgp8IflY0qSmBm66CY4+\nGs44I+y5oMQgIo1F3qzUFmpWisaKFTBhQpjlfM892stZJNeksllJy2e0A+5w221hOe1x42DOHCUG\nEfloWj4jx61eDeecAxs3wty52stZRFpGlUOOcg9NR5/+NBx7bFgKQ4lBRFpKlUMOeu89OPdcePvt\n0OE8dmzcEYlItlHlkEPc4cEHw2J5hxwCCxYoMYhI26hyyBHr1sEFF8CSJfDkk3D44XFHJCLZTJVD\nDnjssbARz8iR8MorSgwisudUOWSxjRvhkktCZ/PDD2svZxFJHVUOWeqpp0K10KdPWFpbiUFEUkmV\nQ5apqIBLL4WZM8NQVe3lLCJRUOWQRWbPDtVCdXXYtlOJQUSiosohC1RWwhVXwKOPwtSp2stZJNvU\neA0f7PyA3l17xx1Kiyk5ZLh58+Css8K6SK++qr2cRTLZhm0bKC0vpbS8lKXrl1K6IRwv37Cc7x34\nPe4Yd0fcIbaYVmXNUNu3h207770Xfv97OPXUuCMSEYDtu7azfMPyuiRQWl7K0vKllJaXsmPXDgry\nCygcUMiYvDEU5hfWHaejakjlqqxKDhno5ZfhzDNhv/3gj3/UXs4i6VbjNazevLrBB3/t8XsV7zGy\n30gKBxRSkFdAQX5BXUIY1HMQFuN2ikoOOWrnTvjlL8Py2r/9LZx2mrbtFIlSeWV5gw//2gTw5oY3\nyeueFz708wsZk7+7ChjZbySdOmRmi3y2bxMqzSgpCdXCsGGwcCEMHRp3RCK5YVvVtgbNQLXJYGn5\nUnbV7KIwv7AuCXzrgG9ROKCQ0Xmj6dWlV9yhx0qVQ8x27YLrr4cbb4Trrgudz6oWRFqnuqaatze/\n3WwzUNnWMj7R/xPNVgEDewyMtRko1VQ55Ig33oDx46F379DPsM8+cUckkrncnfWV65vtCH5z45sM\n6DEgfPjnjaFwQCEnjzmZgvwCRvQbkbHNQJlMlUMMamrgd78L/Qs//zmcfz500HREEQAqqypZvmF5\nGApaXkrphtK6Y8frKoDa5qAx+WMYkzeGnl16xh167NQhncVWrIAJE0KCmDZNezlL+1RdU82qTaua\nrQLWVa5jVP9RdaOAapNBQX4BA3oMyKlmoFRTcshC7mF2809/ClOmhNVUO3aMOyqR6Lg76yrX7Z4Q\nVq8KWLFxBYN6DWrwwV/bHzCi7wg6dtAPR1soOWSZ1avh7LNh06awWN4BB8QdkUjqfLDzA5ZtWNZs\nM1AH60DhgN1NQLVJYHTeaLp37h536DknJ5KDma0CtgDVQJW7H1HvWk4kB/cww3nyZJg0KfzZSf1i\nkoV21eyqawZqnATKt5UzOm90+PDPC5PBapNAfo/8uENvV3IlOawEPu3uG5q5lvXJYe1aOPdcePvt\nkCC0l7NkOnen7IOyZhPAqk2rGNxrcIMqoHZU0N599lYzUIbIpaGsOdez5A4PPRT6FM49Fx55BLp0\niTsqkd0qdlSwbMOyJovDlZaX0qVjl90dwXkFjB87noL8AkbnjaZbp25xhy5pFGflsALYTGhWmuru\nd9S7lpWVw7p1cMEFsGRJqBa0l7PEpaq6ilWbVjWZEFZaXsrGbRsZkz+mQWdw7Vdedy37m81ypXI4\n2t3fM7OBwCwze8Pd59ZeLCoqqntiIpEgkUikP8JWeOyxMF/h9NPh/vuhm37Jkoi5O2u3rt29HES9\nKuCtTW8xrM+wugrgwL0O5NT9T6VwQCHD+wyng2liTS4oLi6muLg4kvfOiNFKZnYVsNXdb0g+zprK\nYeNG+OEPYf78MBJJezlLqm3ZsYVl5cuarQK6d+petzpobUdwQX4Bo/qPomunrnGHLmmW9R3SZtYD\n6OjuFWbWE3ga+Lm7P528nhXJ4amn4Pvfh298A669Fnpqgqa00c7qnazcuLLZKmDLji11nb/1l4gu\nyC+gf/f+cYcuGSQXksO+wN+TDzsBf3b3X9e7ntHJoaICLr0UZs6Eu+/WXs7SMu7OuxXvNrs43OrN\nqxneZ3iTWcGFAwoZ2nuomoGkRbK+z8HdVwKHxHHvPTV7NkycGBJCSQn06RN3RJJpNm/f3GwCWFa+\njF5dejXoCD5uxHGhGShvFF06alibZI6M6HNoLBMrh8pKuPJK+Nvf4Pbb4StfiTsiidOOXTtYsXFF\nkyRQWl7K1p1bG1QA9ZeG6NetX9yhSw7L+malj5NpyWHevLDPwhFHwM03Q55G+7ULNV7DO1veafDB\nXzspbM2WNezTd58mC8MV5BcwtPdQLQ4nsVBySJPt2+FnPwtDU//wBzjllLgjkihs2r6pbkZw/Spg\n2YZl9Onap8lcgML8Qvbtv6+agSTjZH2fQzZ46aWwEc/++8Orr8LAgXFHJHtix64dDbaKrF8FbNu1\nrUECOGW/U+qOe3ftHXfoIrFQ5dDIzp3wi1/AbbfBTTfBaadp285sUeM1rNmyptkq4N2KdxnRb0Sz\nS0QP6TVEzUCSE1Q5RKSkBM48E4YNg0WLYOjQuCOS5mzYtmH3wnD1KoDlG5bTv3v/BquDnvCJEygc\nUMi+/falc8fOcYcukjVUOQC7dsH118ONN8J114XOZ/0iGa/tu7Z/6FaRO6t3NlgWuv4eAWoGkvZM\nHdIp9MYboW+hd2+46y4YMSIttxVCM9Dbm99udonotVvXMrLfyAZLQ9TOEh7Uc5CagUSaoeSQAjU1\n8LvfwS9/CVdfDT/4AXTQJNRIrK9c3+xewW9ueJP8Hvm72/+TH/6F+YWM6DeCTh3U6inSGkoOe2jF\nCpgwISSIadNg9OjIbtVubKva9qF7BFTXVIcE0KgKGJM/hl5desUdukjOUHJoI/cwCul//ifMdp40\nCTpqA6sWq66p5q3NbzVbBZRtLeMT/T9RlwDG5I+pWxtoYI+BagYSSQMlhzZ4+204+2zYvDlsxLP/\n/il9+5zh7qyvXN/s8tArNq5gYI+Bu9v/kx/+BfkF7NN3HzUDicRMyaEV3MM+C5Mnw49+FP7spM8w\nPtj5QV0zUOMkAOz+4K9XBYzJH0OPzj1ijlxEPoySQwu9917Yx3n16lAtjB2bguCyyK6aXby16a1m\nq4D1lesZ1X9Us1VAfvd8NQOJZCElh4/hDg8+GPoUzj039DF0ydFlcNyd9z94v9klolduXMngXoOb\n3St4n7770LGDOlxEcomSw0dYtw4uuACWLAnVwuGHpzi4mGzduZVl5cuaXSK6Y4eODSaD1Y4MGtV/\nFN07d487dBFJEyWHD/H3v4fEcPrpcM010K1bBMFFaFfNLlZuXNmkCWhp+VI2btvI6LzRzVYB+T3y\n4w5dRDKAkkMjGzfCD38I8+eHzudjjokutj3l7qzdurbZjuBVm1YxpPeQZpeI3rvv3toqUkQ+khbe\nq2fGDPj+98NeC4sXQ8+ecUcUVOyoYNmGZc2uENq1U9cGCWDC3hPqtors1inLyh0RyUlZWzls2QKX\nXgqzZoU1kb74xTQFV09VdRUrN61ssEJobRLYvGMzo/NGN6kCCvILyOuureREJPXafeXwr3/BxIlw\n/PFhI54+faK7l7vz3tb3miwOV1peylub3mJYn2F1TT9jB4/l25/8NgX5BQzrM0zNQCKStbKqcvjg\nA7jiitDxfPvt8JWvpO6eW3ZsaXZ10GUbltGjc48GC8PVVgCj+o+ia6euqQtCRGQPZH2HtJmdCNwE\ndATudPffNLreJDnMmxeW1j7ySLj5ZshrQ8vMzuqdrNi4otkksHXn1rqZwI2bgfp169f2b1ZEJE2y\nOjmYWUeGp4z6AAAHjElEQVRgKXA88A6wADjN3f9T7zl1yWH7dvjZz+D+++EPfwgdzx/F3Xm34t3d\nw0CTK4QuXb+U1VtWs0/ffRrsFFbbJDS099BWzwouLi4mkUi06jVxUJyppThTKxvizIYYIfv7HI4A\nlrv7KgAzexD4OvCfxk986aVQLey3X+hbGDhw97VN2zft7gSut0T0svJl9O7au25JiIL8AhIjE3Wj\ngbp0TN1U6Wz5D6M4U0txplY2xJkNMaZaHMlhGLC63uM1wJGNn/Szn8Efb9/B5deuYNSRS5lWWsrS\neburgMqqygZ7BIwrGFe3TlDfbn3T9s2IiOSiOJJDi9qxbqgaRfVF73B7xT4ULAxNP0cMO4LTDz6d\ngvyCNjUDiYhIy8TR53AUUOTuJyYfXwnU1O+UNrPMG0IlIpIFsrlDuhOhQ/qLwLvAizTqkBYRkXil\nvVnJ3XeZ2UXATMJQ1ruUGEREMktGToITEZF4Zdz6DmZ2opm9YWbLzOzymGPZ28xmm9kSM3vNzH6Y\nPJ9nZrPMrNTMnjazfvVec2Uy9jfM7EtpjLWjmS00s+kZHGM/M3vEzP5jZq+b2ZEZGueVyX/zEjP7\ni5l1zYQ4zexuMyszs5J651odl5l9Ovm9LTOz36UpzuuT/+6LzexRM+tb71rGxFnv2qVmVmNmefXO\npT3OD4vRzC5O/n2+Zmb1+2tTF6O7Z8wXoZlpOTAS6AwsAvaPMZ7BwCHJ416EvpL9geuAycnzlwPX\nJo8PSMbcOfk9LAc6pCnW/wb+DDyRfJyJMd4LTEwedwL6ZlqcyXutALomHz8EjM+EOIFjgU8BJfXO\ntSau2paCF4Ejksf/BE5MQ5wn1P69ANdmapzJ83sDTwErgbw44/yQv8vPA7OAzsnHA6OIMdMqh7oJ\ncu5eBdROkIuFu69190XJ462EiXrDgHGEDzqSf34jefx14AF3r/IwyW854XuKlJkNB74C3AnUjlTI\ntBj7Ase6+90Q+p7cfXOmxQlsAaqAHsnBEz0IAydij9Pd5wIbG51uTVxHmtkQoLe7v5h83n31XhNZ\nnO4+y91rkg9fAIZnYpxJNwKTG52LJc4PifF84NfJz0jcfV0UMWZacmhugtywmGJpwMxGEjL4C8Ag\ndy9LXioDBiWPhxJirpWu+H8LXAbU1DuXaTHuC6wzs2lm9oqZ3WFmPTMtTnffANwAvE1ICpvcfVam\nxVlPa+NqfP4d0v8zNpHw2yvNxBNrnGb2dWCNu7/a6FImxTkG+JyZPW9mxWZ2WBQxZlpyyMjecTPr\nBfwNuMTdK+pf81CnfVTckX5PZvZV4H13X8juqqFhADHHmNQJOBT4g7sfCnwAXNEgiAyI08xGAZMI\nZflQoJeZnd4giAyIs9mbfnxcsTOznwA73f0vccfSmJn1AKYAV9U/HVM4H6UT0N/djyL8UvjXKG6S\nacnhHUJ7X629aZjx0s7MOhMSw/3u/ljydJmZDU5eHwK8nzzfOP7hyXNR+iwwzsxWAg8AXzCz+zMs\nRgj/jmvcfUHy8SOEZLE2w+I8DJjn7uXuvgt4FPhMBsZZqzX/zmuS54c3Op+WeM3sLELz5/+rdzqT\n4hxF+KVgcfLnaTjwspkNyrA41xD+X5L8eaoxswGpjjHTksNLwBgzG2lmXYDvAE/EFYyZGXAX8Lq7\n31Tv0hOETkqSfz5W7/x3zayLme1LKP9eJELuPsXd93b3fYHvAv9y9zMyKcZknGuB1WZWkDx1PLAE\nmJ5JcQJvAEeZWffkv//xwOsZGGetVv07J/8dtlgYKWbAGfVeExkLy/RfBnzd3bc3ij8j4nT3Encf\n5O77Jn+e1gCHJpvtMibO5Pt/ASD589TF3denPMZU9aqn6gs4iTAqaDlwZcyxHENox18ELEx+nQjk\nAf8HlAJPA/3qvWZKMvY3gC+nOd7j2D1aKeNiBMYSlmhfTPjNp2+GxjmZkLhKCJ28nTMhTkJl+C6w\nk9A3N6EtcQGfTn5vy4Gb0xDnRGAZ8Fa9n6M/ZFCcO2r/PhtdX0FytFJccTYXY/L/4/3Je74MJKKI\nUZPgRESkiUxrVhIRkQyg5CAiIk0oOYiISBNKDiIi0oSSg4iINKHkICIiTSg5iIhIE0oOIiLShJKD\ntFtmdnhy85muZtYzuXHKAfWuj0xumjLNzJaa2Z/N7Etm9m8Lm+scnnxekZnda2bPmtkqM/svM/tf\nM3vVzGYkl/4WySpKDtJueVi07AngF8BvCIsrvt7oaaOA/wX2AwqB77j70cCPCUsV1NqXsAnLOOBP\nwCx3PxjYBpwc5fchEgX9RiPt3dWEBR+3ARc3c32luy8BMLMlhHWMAF4jrOAJYZnsGe5ebWavEXY8\nm5m8VlLveSJZQ5WDtHcDgJ6EbWC7N3N9R73jGsJicrXH9X+52gngYbezqkav0S9hknWUHKS9mwr8\nFPgLoWkJM3ujle+RiRvCiOwR/UYj7ZaZnQnscPcHzawDMM/MvtXoaY2XLfZmjhvvwPZRrxHJClqy\nW6QeMzsZ2Nfdb407FpE4KTmIiEgT6nMQEZEmlBxERKQJJQcREWlCyUFERJpQchARkSaUHEREpAkl\nBxERaeL/AxTcQojqb0i5AAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x10b5b5f90>"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Examples 10.10-15,Page No:563"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable Decleration\n",
"rho=1.204 #Density of the fluid in kg/m^3\n",
"w=0.5 #Width of the test object in m\n",
"U=10 #Velocity of the flow in m/s\n",
"delta1=0.042 #Boundary Layer thickness at 1 in m\n",
"delta2=0.077 #Boundary Layer thickness at 2 in m\n",
"\n",
"#Calculations\n",
"a=(delta2-delta1) \n",
"b=w*rho\n",
"c=U**2\n",
"Fd=(b*c*a*4)/45#Skin friction drag in N\n",
"\n",
"#Result\n",
"print \"The Skin Friction Drag is\",round(Fd,2),\"N\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Skin Friction Drag is 0.19 N\n"
]
}
],
"prompt_number": 15
}
],
"metadata": {}
}
]
}
|