summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics-Fundamentals_&_Applications/Chapter07.ipynb
blob: 9cc4d91437fa38b92cd98113422c5a5556b9310a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
{
 "metadata": {
  "name": "",
  "signature": "sha256:7a83d458ec863729e5567b39b8a122f73ab73bc391e4a0f9cd56c8645c12c28b"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 07: Dimensional Analysis and Modeling"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.7-4, Page No:290"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "g_earth=9.81 #Acceleration due to gravity on earth in m/^2\n",
      "theta=(pi*5)/180 #Angle above the horizon in radians\n",
      "v=21 #Speed of the baseball in m/s\n",
      "zo=2 #Height at wich the ball is left in m\n",
      "t_star=2.75 #Time required to hit the ground in s\n",
      "\n",
      "#Calculations\n",
      "#Part(a)\n",
      "g_moon=g_earth/6 #Acceleration due to gravity on the moon in m/s^2\n",
      "w_o=v*sin(theta) #Vertical component of Speed in m/s\n",
      "Fr_square=w_o**2/(g_moon*zo) #Value of froude number square \n",
      "t_a=(t_star*zo)/w_o #Estimated time required to hit the ground in s\n",
      "#Part(b)\n",
      "#simplfying the calculations\n",
      "a=w_o**2+(2*zo*g_moon)\n",
      "b=a**0.5\n",
      "t_b=(w_o+b)/g_moon #Exact time required for the ball to hit the ground in s\n",
      "\n",
      "#Result\n",
      "print \"The estimated time required to hit the ground is\",round(t_a,2),\"s\"\n",
      "print \"The exact time required for the ball to hit the ground is\",round(t_b,2),\"s\"\n",
      "#Due to the decimal accuracy the answer in textbook differs "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The estimated time required to hit the ground is 3.01 s\n",
        "The exact time required for the ball to hit the ground is 3.04 s\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.7-5, Page No:293"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "Vp=50 #Velocity in the prototype in mi/h\n",
      "um=1.754*10**-5 #Viscosity in the model in kg/m.s\n",
      "up=1.849*10**-5 #Viscosity in the prototype in kg/m.s\n",
      "rhop=1.184 #Density of air in prototype in kg/m^3\n",
      "rhom=1.269 #Density of air in model in kg/m^3\n",
      "Lp_Lm=5 #ratio of length \n",
      "\n",
      "#Calculations\n",
      "a=um/up\n",
      "b=rhop/rhom\n",
      "Vm=Vp*a*b*Lp_Lm #Velocity in the model in mi/h\n",
      "\n",
      "#result\n",
      "print \"The velocity in the wind tunnel required is\",round(Vm),\"mi/h\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The velocity in the wind tunnel required is 221.0 mi/h\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.7-6, Page No:294"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "Fd=94.3 #Average Drag force on the model in N\n",
      "Vp=float(50) #Velocity of the prototype in mi/h\n",
      "Vm=float(221) #Velocity of the model in mi/h\n",
      "rhop=1.184 #Density of air in prototype in kg/m^3\n",
      "rhom=1.269 #Density of air in model in kg/m^3\n",
      "Lp_Lm=5 #ratio of length \n",
      "\n",
      "#Calculations\n",
      "a=(rhop/rhom)\n",
      "c=(Lp_Lm**2)\n",
      "b=Vm/Vp\n",
      "Fd_p=(Fd*a*c)/(b**2) #Drag Force on the prototype in N\n",
      "\n",
      "#Result\n",
      "print \"The Drag force on the prototype is\",round(Fd_p),\"N\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Drag force on the prototype is 113.0 N\n"
       ]
      }
     ],
     "prompt_number": 44
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.7-10, Page No:313"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import matplotlib.pyplot as plt\n",
      "%matplotlib inline\n",
      "\n",
      "#Variable Decleration\n",
      "Lm=0.991 #Length of the model truck in m\n",
      "Hm=0.257 #height of the model truck in m\n",
      "Wm=0.159 #Width of the model truck in m\n",
      "rho=1.184 #Density of Air in kg/m^3\n",
      "u=1.849*10**-5 #Viscosity of air in kg/m.s\n",
      "FD_m=89.9 #Drag Force in the model in N\n",
      "V_m=70 #Velocity in the model in m/s\n",
      "C=16 #Geometric Ratio\n",
      "Vp=26.8 #Velocity of the prototype in m/s\n",
      "\n",
      "#Calculations\n",
      "\n",
      "V=range(20,75,5) #Velocity array each in m/s\n",
      "F=[12.4,19,22.1,29,34.3,39.9,47.2,55.5,66,77.6,89.9] #Drag force array in N\n",
      "X=transpose(F) #Transpose of the matrix in order to mutliply\n",
      "#Simplfying the calculations by using steps\n",
      "\n",
      "CD_m1=(X/V)\n",
      "CD_m2=CD_m1/V\n",
      "CD_m=(2*CD_m2)/(rho*Wm*Hm) #Drag Coefficient \n",
      "\n",
      "Y=transpose(V)\n",
      "Re_m=(rho*Y*Wm)/u  #Reynolds Number for each set\n",
      "\n",
      "#Calculations for prototype\n",
      "Re_p=(rho*Vp*C*Wm)/u #Reynolds Number for the prototype\n",
      "\n",
      "#Aerodynamic Drag Calculations\n",
      "FD_p=0.5*rho*Vp**2*C**2*Wm*Hm*CD_m[10] #Aerodynamic Drag on the Vehicle in N\n",
      "\n",
      "#Result\n",
      "print \"The Aerodynamic Drag on the Vehicle is\",round(FD_p),\"N\"\n",
      "\n",
      "plt.plot(Re_m,CD_m,'ro')\n",
      "plt.ylabel('Cd')\n",
      "plt.xlabel('Re')\n",
      "plt.show()\n",
      "\n",
      "#The answer in the textbook has been rounded off to the nearest value"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Aerodynamic Drag on the Vehicle is 3373.0 N\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEPCAYAAACDTflkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFK5JREFUeJzt3X+QZWV95/H3127sjj8CKin8AYZUa1wwoGgK3STCNdmZ\n6ThR8quiRAuNlrEqsXuS3Y0sjBS9ZWaTWHFdetwoGiXGimA2CZZUG2bG0pshiaLo8DOA0EAFjBkN\nURKMPcUM3/3jnhnuXHra7sd77u17+v2qujXnPufMOd+HHu6nz3POc25kJpIklXjCsAuQJI0uQ0SS\nVMwQkSQVM0QkScUMEUlSMUNEklSs1hCJiI9ExP6IuOUY68+LiJsiYl9EfDkifrrOeiRJ/RV1zhOJ\niFcADwN/mplnLLP+yZn5nWr5DODqzHxebQVJkvqq1jORzLwO+NYK67/T9fYpwL/UWY8kqb/Gh11A\nRPw88HvAs4DNQy5HkrQGQ7+wnpmfzMzTgFcDHxt2PZKk1Rv6mchhmXldRIxHxDMy88HudRHhA74k\nqUBmRp37H+qZSERMRURUyy8B6A2QwzKzsa9LL7106DXYN/tn/5r3GoRaz0Qi4krgXODEiLgfuBQ4\nDiAzLwd+CbggIh6hcxfX6+qsR5LUX7WGSGae/z3Wvxt492r29c4tWxg/cICDExNsnp3lnK1b+1Kj\nJKncurkm8r387u7dR5a3Ly4CNCZIWq3WsEuoTZP7BvZv1DW9f4NQ62TDfomIx1V5yZYtvOvaa4dS\njySNgoggm3xh/fsxtrQ07BIkacMb2RA5NDk57BIkacMbyRC5eGqKTTMzwy5Dkja8kbmwfsmWLYwt\nLXFocpLpmZnGXFSXpFE2OhfWR6BOSVpPvLAuSVrXDBFJUrGRuSYySHsXFtg9P+8MeUn6HgyRHnsX\nFti1bRs7qlnx0LwZ8pLULw5n9dg9P39UgADsWFxkz86dQ6pIktYvQ6TH+IEDy7Y7Q16SHs8Q6XFw\nYmLZdmfIS9LjGSI9Ns/Osn1q6qg2Z8hL0vKcbLiMvQsL7Nm588gM+U3OkJc0ggYx2dAQkaSGcsa6\nJGldM0QkScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVKxWkMkIj4S\nEfsj4pZjrH99RNwUETdHxN9FxJl11iNJ6q+6z0SuAKZXWH8PcE5mngm8C/hgzfVIkvqo1hDJzOuA\nb62w/vOZ+VD19nrg5DrrkST113q6JvIW4NPDLkKStHrjwy4AICJeCbwZ+Mlh1yJJWr2hh0h1Mf1D\nwHRmHnPoa25u7shyq9Wi1WrVXpskjZJ2u0273R7oMWv/ZsOIOBW4JjPPWGbdc4HPAm/IzC+ssA+/\n2VCS1mjkvx43Iq4EzgVOBPYDlwLHAWTm5RHxx8AvAP9Y/ZVHMvPsZfZjiEjSGo18iPSLISJJa+d3\nrEuS1jVDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnF\nDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnF\nDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVKxWkMkIj4SEfsj4pZjrP9PEfH5iFiKiP9WZy2SpP6r+0zk\nCmB6hfUPAjPAH9ZchySpBrWGSGZeB3xrhfXfzMwbgEfqrEOSVA+viUiSio0Pu4DVmpubO7LcarVo\ntVpDq0WS1qN2u0273R7oMSMz6z1AxKnANZl5xgrbXAo8nJnvOcb6rLtOSWqaiCAzo85jrJfhrFo7\nKUmqR61nIhFxJXAucCKwH7gUOA4gMy+PiGcCXwJ+EHgU+Hfg9Mx8uGc/nolI0hoN4kyk9uGsfjBE\nJGntNtJwliRpBBkikqRihogkqZghIkkqZohIkooZIpKkYoaIJKmYISJJKmaISJKKGSKSpGKGiCSp\nmCEiSSpmiEiSihkikqRihogkqZghIkkqZohIkooZIpKkYoaIJKmYISJJKmaISJKKGSKSpGKGiCSp\nmCEiSSo2PuwC1LF3YYHd8/OMHzjAwYkJNs/Ocs7WrcMuS5JWZIisA3sXFti1bRs7FhePtG2vlg0S\nSeuZw1nrwO75+aMCBGDH4iJ7du4cUkWStDqGyDowfuDAsu1jS0sDrkSS1uaYw1kR8UtAAlH9eZTM\n/KvvtfOI+AiwFfhGZp5xjG3mgZ8F/gN4U2buW13pzXFwYmLZ9kOTkwOuRJLWZqUzkVdXrzcDHwZe\nX73+uGpbjSuA6WOtjIhXAc/LzOcDvw68f5X7bZTNs7Nsn5o6qu3iqSk2zcwMqSJJWp1jnolk5psA\nImIPcHpmfr16/yzgo6vZeWZeFxGnrrDJaw7vKzOvj4gTIuKkzNy/quob4vDF80t27mRsaYlDk5NM\nz8x4UV3Sureau7NOAf656/1+4Ll9Ov5zgPu73j8AnFwdY0M5Z+tWQ0PSyFlNiHwG2BURH6dzfeS1\nwJ4+1hA97x93/QVgbm7uyHKr1aLVavWxBEkafe12m3a7PdBjRuayn9lExPOBkzLzbyPiF4FXVKu+\nBXw8M+9e1QE6w1nXLHdhPSI+ALQz86rq/R3Aub3DWRGRx6pTkrS8iCAze39R76uVLqz/H+DfoHMn\nVmb+dmb+NvBJ4L19Ov6ngAsAIuLlwLc32vUQSRplKw1nnZSZN/c2ZubNEfEjq9l5RFwJnAucGBH3\nA5cCx1X7uTwzPx0Rr4qIu4HvAL+25h5IkoZmpeGsuzPzeWtdVweHsyRp7QYxnLXSmcgNEfHrmfnB\nnqLeCny5zqJUPx/4KKkfVgqR3wKujojX81hovBSYAH6h7sJUHx/4KKlfjjmcBRARAbwS+DE6t97e\nlpmfHVBt3XU4nNVH79yyhd/dvftx7Zds2cK7rr12CBVJqsOwh7OoPrk/W73UED7wUVK/+BTfDcgH\nPkrqF0NkA/KBj5L6ZcVrIuuF10T6b+/CAnu6Hvi4yQc+So0ziGsihogkNdSwH3siSdKKDBFJUjFD\nRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFD\nRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVqzVEImI6Iu6IiLsi4sJl1j8tIq6OiJsi4vqIeGGd\n9UiS+qu2EImIMeB9wDRwOnB+RJzWs9nFwFcy80XABcBlddUjSeq/Os9Ezgbuzsz7MvMR4CrgvJ5t\nTgM+B5CZdwKnRsQP1ViTJKmP6gyR5wD3d71/oGrrdhPwiwARcTbww8DJNdYkSeqj8Rr3navY5veB\nyyJiH3ALsA84tNyGc3NzR5ZbrRatVuv7r1CSGqTdbtNutwd6zMhczWd9wY4jXg7MZeZ09f4i4NHM\n/IMV/s69wBmZ+XBPe9ZVpyQ1VUSQmVHnMeoczroBeH5EnBoRTwReC3yqe4OIOL5aR0S8Ffib3gCR\nJK1ftQ1nZebBiHg7sAsYAz6cmbdHxNuq9ZfTuWvrTyIigVuBt9RVj4Zr78ICu+fnGT9wgIMTE2ye\nneWcrVuHXZak71Ntw1n95HDWaNu7sMCubdvYsbh4pG371BRbLrvMIJFqNOrDWRIAu+fnjwoQgB2L\ni+zZuXNIFUnqF0NEtRs/cGDZ9rGlpQFXIqnfDBHV7uDExLLthyYnB1yJpH4zRFS7zbOzbJ+aOqrt\n4qkpNs3MDKkiSf3ihXUNxN6FBfbs3MnY0hKHJifZNDPjRXWpZoO4sG6ISFJDeXeWJGldM0QkScUM\nEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUM\nEUlSMUNEklTMEJEkFTNEJEnFxoddgFSXvQsL7J6fZ/zAAQ5OTLB5dtbvdZf6zBBRI+1dWGDXtm3s\nWFw80ra9WjZIpP5xOEuNtHt+/qgAAdixuMienTuHVJHUTIaIGmn8wIFl28eWlgZcidRstYZIRExH\nxB0RcVdEXLjM+hMj4tqIuDEibo2IN9VZjzaOgxMTy7YfmpwccCVSs9UWIhExBrwPmAZOB86PiNN6\nNns7sC8zXwy0gPdEhNdp9H3bPDvL9qmpo9ounppi08zMkCqSmqnOD+yzgbsz8z6AiLgKOA+4vWub\nrwNnVss/CDyYmQdrrEkbxOGL55fs3MnY0hKHJieZnpnxorrUZ5GZ9ew44peBLZn51ur9G4CXZeZM\n1zZPAD4L/CjwVOBXMvOvl9lX1lWnJDVVRJCZUecx6rwmsppP/YuBGzPz2cCLgf8bEU+tsSZJUh/V\nOZz1NeCUrvenAA/0bPMTwA6AzFyMiHuBFwA39O5sbm7uyHKr1aLVavW3Wkkace12m3a7PdBj1jmc\nNQ7cCfwM8E/AF4HzM/P2rm3+N/BQZv7PiDgJ+DJwZmb+a8++HM6SpDUaxHBWbWcimXkwIt4O7ALG\ngA9n5u0R8bZq/eXA/wKuiIib6AytvaM3QCRJ61dtZyL95JmIJK3dSJ+JSBuND3zURmSISH3gAx+1\nUfnsLKkPfOCjNipDROoDH/iojcoQkfrABz5qozJEpD7wgY/aqLzFV+qTvQsL7Ol64OMmH/ioIRvE\nLb6GiCQ1lPNEJK1o0HNThjEXZiP0cZQZItKIGvTclGHMhdkIfRx5mbnuX50yJXXbvnlzJjzu9c4t\nWxpxvGEccxh9rFP12Vnr57N3Z0kjatBzU4YxF2Yj9HHUGSLSiBr03JRhzIXZCH0cdYaINKIGPTdl\nGHNhNkIfR523+EojbNBzU4YxF2Yj9LEuzhOpGCKStHaDCBGHsyRJxQwRSVIxQ0SSVMwQkSQVM0Qk\nScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBWrNUQiYjoi7oiIuyLiwmXW//eI2Fe9\nbomIgxFxQp01SZL6p7YQiYgx4H3ANHA6cH5EnNa9TWb+YWaelZlnARcB7cz8dl01rVftdnvYJdSm\nyX0D+zfqmt6/QajzTORs4O7MvC8zHwGuAs5bYftfBa6ssZ51q8n/kJvcN7B/o67p/RuEOkPkOcD9\nXe8fqNoeJyKeBGwB/rLGeiRJfVZniKzlW6ReDfztRhzKkqRRVts3G0bEy4G5zJyu3l8EPJqZf7DM\ntlcDn8jMq46xL7/WUJIKjOzX40bEOHAn8DPAPwFfBM7PzNt7tjseuAc4OTO/W0sxkqRajNe148w8\nGBFvB3YBY8CHM/P2iHhbtf7yatOfB3YZIJI0emo7E5EkNV+d80ROiYjPRcRtEXFrRMxW7U+PiD0R\n8dWI2N09uTAiLqomJt4REZu72l9aTUa8KyIu62qfiIhPVO1fiIgf7lr3xuoYX42IC2ro32REXB8R\nN0bEP0TE7zWpf13HGasmg17TtP5FxH0RcXPVvy82sH8nRMRfRMTt1b/RlzWhfxHxgnhskvK+iHgo\nImab0Leeem+ravt4Vc/67F9m1vICngm8uFp+Cp3rI6cB7wbeUbVfCPx+tXw6cCNwHHAqcDePnSl9\nETi7Wv40MF0t/wbwR9Xya4GrquWnA4vACdVrETihhj4+qfpzHPgC8FNN6l91rP8K/Bnwqep9Y/oH\n3As8vaetSf37KPDmrn+jxzepf9WxngB8HTilKX2rarwHmKjefwJ443rtX99/qCv8h/kk8F+AO4CT\nqrZnAndUyxcBF3Ztfy3wcuBZwO1d7a8DPtC1zcu6/if5ZrV8PvD+rr/zAeB1NfbtScCXgBc2qX/A\nycBngFcC11RtTerfvcAzetoa0T86gXHPMu2N6F/XvjcD1zWpb3Q+yO8EnlYd+xpg03rt30AewBgR\npwJnAdfT+Y+wv1q1HzipWn42nQmJhx2enNjb/jUem7R4ZEJjZh4EHoqIZ6ywr76KiCdExI10+vG5\nzLyNBvUPeC/wO8CjXW1N6l8Cn4mIGyLirVVbU/r3I8A3I+KKiPhKRHwoIp5Mc/p32Ot47EkXjehb\nZv4r8B7gH+nc2frtzNzDOu1f7SESEU+hMxN9W2b+e/e67ERd1l1DXTLz0cx8MZ3f2M+JiFf2rB/Z\n/kXEzwHfyMx9wLL3mY9y/yo/mZ3ntv0s8JsR8YrulSPev3HgJXSGLF4CfAf4H90bjHj/iIgn0pmo\n/P96141y3yJiCvgtOkNTzwaeEhFv6N5mPfWv7qf4HkcnQD6WmZ+smvdHxDOr9c8CvlG1f43OuOZh\nJ9NJwa9Vy73th//Oc6t9jQPHZ+aDy+zrFI5O177KzIeABeClNKd/PwG8JiLupfOb3k9HxMdoTv/I\nzK9Xf34TuJrO896a0r8HgAcy80vV+7+gEyr/3JD+QSf8v1z9/KA5P7sfB/4+Mx+szhL+CvjPrNef\nXR3jlNVYWgB/Cry3p/3dVON3dH4z6r049EQ6p+KLPHZx6HrgZdU+ey8Ovb9rvK/74tA9dC4MPe3w\ncp/7d+LhfQI/AOylM7GyEf3r6eu5PHZNpBH9o3Md66nV8pOBv6Mzvt6I/lXH2Qv8aLU8V/WtSf27\nCnhj1/tG9A14EXArnc+VoHODxG+u1/7V8qFTFfNTdMbSbwT2Va/pqsjPAF8FdncXCFxM586CO4At\nXe0vBW6p1s13tU8Afw7cRefuqFO71v1a1X5X9z+0PvbvDOArVf9uBn6n64cw8v3r6eu5PHZ3ViP6\nV/3PdmP1uhW4qEn9q47xIjo3fNxE57fZ45vSPzrB/y9Uvwg08Gf3DuC2qraP0rnzal32z8mGkqRi\nfj2uJKmYISJJKmaISJKKGSKSpGKGiCSpmCEiSSpW25dSSU0TEYfozAkao3Pf/QWZ+fBwq5KGyzMR\nafX+IzPPyswzgX8D3jbsgqRhM0SkMp8HpqDzwLyI+OvqacB7I+IFQ65NGhhDRFqjiBij85ytW6um\nDwIzmfnjdB6d/0fDqk0aNB97Iq1SRByk8xyi5wD30fninyfReZrqnV2bPjEzXzjwAqUh8MK6tHrf\nzcyzIuIHgF3AeXQeiPft7HwvibThOJwlrVFmfheYBXYADwP3RsQvA0THmcOsTxokQ0RavSNjv5l5\nI53bfH8FeD3wluqrkm8FXjOc8qTB85qIJKmYZyKSpGKGiCSpmCEiSSpmiEiSihkikqRihogkqZgh\nIkkqZohIkor9f3X4SsSs+H35AAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x10b5b8950>"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.7-11, Page No:316"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable Decleration\n",
      "Lm_Lp=10**-2 #Length Scale Factor\n",
      "vp=1.002*10**-6 #Kinematic viscosity of the prototype in m^2/s\n",
      "\n",
      "#Calculations\n",
      "vm=vp*(Lm_Lp)**1.5 #Required Kinematic Viscosity in m^2/s\n",
      "\n",
      "#Result\n",
      "print \"Looking up in a table we cannot find a fluid of the kinematic viscosity\",vm,\"m^2/s\"\n",
      "\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Looking up in a table we cannot find a fluid of the kinematic viscosity 1.002e-09 m^2/s\n"
       ]
      }
     ],
     "prompt_number": 2
    }
   ],
   "metadata": {}
  }
 ]
}