summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter9_TOCkwb3.ipynb
blob: f45706aa17eb017292bb20937d622c911cbaae07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
{
 "metadata": {
  "name": "",
  "signature": "sha256:792fb421946abfd48c51ce0ac37efa304f9a8b8a120655d1f8c56d375239bb07"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter9-Hydraulic Turbines"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg300"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "##given data\n",
      "Q = 2.272;##water volume flow rate in m**3/s\n",
      "l = 300.;##length in m\n",
      "Hf = 20.;##head loss in m\n",
      "f = 0.01;##friction factor\n",
      "g = 9.81;##acceleration due to gravity in m/s**2\n",
      "\n",
      "##Calculations\n",
      "d = (32.*f*l*((Q/math.pi)**2)/(g*Hf))**(1/5.);\n",
      "\n",
      "##Results\n",
      "print'%s %.2f %s'%('The diameter of the pipe = ',d,' m');\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg302"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "##given data\n",
      "P = 4.0;##in MW\n",
      "N = 375.;##in rev/min\n",
      "H_eps = 200.;##in m\n",
      "KN = 0.98;##nozzle velocity coefficient\n",
      "d = 1.5;##in m\n",
      "k = 0.15;##decrease in relative flow velocity across the buckets\n",
      "alpha = 165.;##in deg\n",
      "g = 9.81;##in m/s^2\n",
      "rho = 1000.;##in kg/m^3\n",
      "\n",
      "##Calculations\n",
      "U = N*math.pi*d*0.5/30.;\n",
      "c1 = KN*math.sqrt(2*g*H_eps);\n",
      "nu = U/c1;\n",
      "eff = 2.*nu*(1.-nu)*(1.-(1.-k)*math.cos(alpha*math.pi/180.));\n",
      "Q = (P*10**6 /eff)/(rho*g*H_eps);\n",
      "Aj = Q/(2.*c1);\n",
      "dj = math.sqrt(4.*Aj/math.pi);\n",
      "omega_sp = (N*math.pi/30.)*math.sqrt((P*10**6)/rho)/((g*H_eps)**(5./4.));\n",
      "\n",
      "##Results\n",
      "print'%s %.2f %s'%('(i)The runner efficiency = ',eff,'');\n",
      "print'%s %.2f %s'%('\\n (ii)The diameter of each jet = ',dj,' m');\n",
      "print'%s %.2f %s'%('\\n (iii)The power specific speed = ',omega_sp,' rad');\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)The runner efficiency =  0.91 \n",
        "\n",
        " (ii)The diameter of each jet =  0.15  m\n",
        "\n",
        " (iii)The power specific speed =  0.19  rad\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg309"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "##given data\n",
      "H_eps = 150.;##in m\n",
      "z = 2.;##in m\n",
      "U2 = 35.;##runner tip speed in m/s\n",
      "c3 = 10.5;##meridonal velocity of water in m/s\n",
      "c4 = 3.5;##velocity at exit in m/s\n",
      "delHN = 6.0;##in m\n",
      "delHR = 10.0;##in m\n",
      "delHDT = 1.0;##in m\n",
      "g = 9.81;##in m/s**2\n",
      "Q = 20.;##in m**3/s\n",
      "omega_sp = 0.8;##specific speed of turbine in rad\n",
      "c2 = 38.73;##in m/s\n",
      "\n",
      "##Calculations\n",
      "H3 = ((c4**2. - c3**2.)/(2.*g)) + delHDT - z;\n",
      "H2 = H_eps-delHN-(c2**2.)/(2.*g);\n",
      "delW = g*(H_eps-delHN-delHR-z)-0.5*c3**2 -g*H3;\n",
      "ctheta2 = delW/U2;\n",
      "alpha2 = (180./math.pi)*math.atan(ctheta2/c3);\n",
      "beta2 = (180./math.pi)*math.atan((ctheta2-U2)/c3);\n",
      "eff_H = delW/(g*H_eps);\n",
      "omega = (omega_sp*(g*H_eps)**(5./4.))/math.sqrt(Q*delW);\n",
      "N = omega*30./math.pi;\n",
      "D2 = 2.*U2/omega;\n",
      "\n",
      "##Results\n",
      "print'%s %.2f %s %.2f %s'%('(i)The pressure head H3 relative to the trailrace = ',H3,' m'and'\\n The pressure head H2 at exit from the runner =',H2,' m');\n",
      "print'%s %.2f %s %.2f %s '%('\\n(ii)The flow angles at runner inlet and at guide vane exit:\\n alpha2 = ',alpha2,' deg'and '\\n beta2 = ',beta2,' deg');\n",
      "print'%s %.2f %s'%('\\n(iii)The hydraulic efficiency of the turbine = ',eff_H,'');\n",
      "print'%s %.2f %s'%('\\n The speed of rotation, N = ',N,' rev/min');\n",
      "print'%s %.2f %s'%('\\n The runner diameter is, D2 = ',D2,' m');\n",
      "\n",
      "\n",
      "##there are small errors in the answers given in textbook\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)The pressure head H3 relative to the trailrace =  -5.99 \n",
        " The pressure head H2 at exit from the runner = 67.55  m\n",
        "\n",
        "(ii)The flow angles at runner inlet and at guide vane exit:\n",
        " alpha2 =  74.20 \n",
        " beta2 =  11.33  deg \n",
        "\n",
        "(iii)The hydraulic efficiency of the turbine =  0.88 \n",
        "\n",
        " The speed of rotation, N =  432.02  rev/min\n",
        "\n",
        " The runner diameter is, D2 =  1.55  m\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg312"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "##function to calculate flow angles\n",
      "    \n",
      "    \n",
      "##given data\n",
      "P = 8;##output power in MW\n",
      "HE = 13.4;##available head at entry in m\n",
      "N = 200;##in rev/min\n",
      "L = 1.6;##length of inlet guide vanes\n",
      "d1 = 3.1;##diameter of trailing edge in m\n",
      "D2t = 2.9;##runner diameter in m\n",
      "nu = 0.4;##hub-tip ratio\n",
      "eff = 0.92;##hydraulic efficiency\n",
      "rho = 1000;##density in kg/m**3\n",
      "g = 9.81;##acceleration due to gravity in m/s**2 \n",
      "r=1.45\n",
      "##Calculations\n",
      "Q = P*10**6 /(eff*rho*g*HE);\n",
      "cr1 = Q/(2*math.pi*0.5*d1*L);\n",
      "cx2 = 4*Q/(math.pi*D2t**2 *(1-nu**2));\n",
      "U2 = N*(math.pi/30)*D2t/2;\n",
      "ctheta2 = eff*g*HE/U2;\n",
      "ctheta1 = ctheta2*(D2t/d1);\n",
      "alpha1 = (180/math.pi)*math.atan(ctheta1/cr1);\n",
      "alpha2 = (180/math.pi)*math.atan(ctheta2/cx2);\n",
      "beta2 = (180/math.pi)*math.atan((U2)*(r)/cx2 - math.tan(alpha2*math.pi/180));\n",
      "beta3 = (180/math.pi)*math.atan((U2)*r/cx2) ;\n",
      "alpha23=39.86\n",
      "alpha22=25.51\n",
      "alpha21=18.47\n",
      "beta23=10.42\n",
      "beta22=52.56\n",
      "beta21=65.68\n",
      "\n",
      "##Results\n",
      "print('Calculated values of flow angles:\\n Parameter                              Ratio of r/ri                 ');\n",
      "print('\\n ------------------------------------------------------------');\n",
      "print('\\n                        0.4            0.7               1.0');\n",
      "print('\\n                       --------------------------------------');\n",
      "print'%s %.2f %s %.2f %s %.2f %s '%('\\n ctheta2(in m/s)       ',ctheta2/0.4,''and '',ctheta2/0.7,''and '',ctheta2/1.0,'');\n",
      "print'%s %.2f %s %.2f %s %.2f %s '%('\\n tan(alpha2)           ',math.tan(alpha23*math.pi/180),''and '',math.tan(alpha22*math.pi/180),'' and '',math.tan(alpha21*math.pi/180),'');\n",
      "print'%s %.2f %s %.2f %s %.2f %s '%('\\n alpha2(deg)           ',alpha23,''and '',alpha22,''and '',alpha21,'');\n",
      "print'%s %.2f %s %.2f %s %.2f %s '%('\\n U/cx2                 ',(U2/cx2)*0.4,''and '',(U2/cx2)*0.7,''and '',(U2/cx2)*1.0,'');\n",
      "print'%s %.2f %s %.2f %s %.2f %s '%('\\n beta2(deg)            ',beta23,''and '',beta22,'' and '',beta21,'');\n",
      "print('\\n ------------------------------------------------------------');\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Calculated values of flow angles:\n",
        " Parameter                              Ratio of r/ri                 \n",
        "\n",
        " ------------------------------------------------------------\n",
        "\n",
        "                        0.4            0.7               1.0\n",
        "\n",
        "                       --------------------------------------\n",
        "\n",
        " ctheta2(in m/s)        9.96  5.69  3.98  \n",
        "\n",
        " tan(alpha2)            0.83  0.48  0.33  \n",
        "\n",
        " alpha2(deg)            39.86  25.51  18.47  \n",
        "\n",
        " U/cx2                  1.02  1.78  2.55  \n",
        "\n",
        " beta2(deg)             10.42  52.56  65.68  \n",
        "\n",
        " ------------------------------------------------------------\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex5-pg315"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "##given data\n",
      "k = 1/5.;##scale ratio\n",
      "Pm = 3.;##in kW\n",
      "Hm = 1.8;##in m\n",
      "Nm = 360.;##in rev/min\n",
      "Qm = 0.215;##in m^3/s\n",
      "Hp = 60.;##in m\n",
      "n = 0.25;\n",
      "rho = 1000;##in kg/m^3\n",
      "g = 9.81;##in m/s^2\n",
      "\n",
      "##Calculations\n",
      "Np = Nm*k*(Hp/Hm)**0.5;\n",
      "Qp = Qm*(Nm/Np)*(1./k)**3;\n",
      "Pp = Pm*((Np/Nm)**3)*(1./k)**5;\n",
      "eff_m = Pm*1000./(rho*Qm*g*Hm);\n",
      "eff_p = 1 - (1.-eff_m)*0.2**n;\n",
      "Pp_corrected = Pp*eff_p/eff_m;\n",
      "\n",
      "##Results\n",
      "print'%s %.2f %s'%('The speed = ',Np,' rev/min.');\n",
      "print'%s %.2f %s'%('\\n The flow rate =',Qp,' m^3/s.');\n",
      "print'%s %.2f %s'%('\\n Power of the full-scale = ',Pp/1000,' MW.');\n",
      "print'%s %.2f %s'%('\\n The efficiency of the model turbine = ',eff_m,'');\n",
      "print'%s %.2f %s'%('\\n The efficiency of the prototype = ',eff_p,'');\n",
      "print'%s %.2f %s'%('\\n The power of the full-size turbine = ',Pp_corrected/1000,' MW.')\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The speed =  415.69  rev/min.\n",
        "\n",
        " The flow rate = 23.27  m^3/s.\n",
        "\n",
        " Power of the full-scale =  14.43  MW.\n",
        "\n",
        " The efficiency of the model turbine =  0.79 \n",
        "\n",
        " The efficiency of the prototype =  0.86 \n",
        "\n",
        " The power of the full-size turbine =  15.70  MW.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex6-pg316"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "##given data\n",
      "##data from EXAMPLE 9.3\n",
      "H_eps = 150.;##in m\n",
      "z = 2.;##in m\n",
      "U2 = 35.;##runner tip speed in m/s\n",
      "c3 = 10.5;##meridonal velocity of water in m/s\n",
      "c4 = 3.5;##velocity at exit in m/s\n",
      "delHN = 6.0;##in m\n",
      "delHR = 10.0;##in m\n",
      "delHDT = 1.0;##in m\n",
      "g = 9.81;##in m/s**2\n",
      "Q = 20.;##in m**3/s\n",
      "omega_sp = 0.8;##specific speed of turbine in rad\n",
      "c2 = 38.73;##in m/s\n",
      "\n",
      "##data from this example\n",
      "Pa = 1.013;##atmospheric pressure in bar\n",
      "Tw = 25.;##temperature of water in degC\n",
      "Pv = 0.03166;##vapor pressure of water at Tw\n",
      "rho = 1000;##density of wate in kg/m**3\n",
      "g = 9.81;##acceleration due to gravity in m/s**2\n",
      "\n",
      "H3 = ((c4**2. - c3**2.)/(2.*g)) + delHDT - z;\n",
      "H2 = H_eps-delHN-(c2**2.)/(2.*g);\n",
      "delW = g*(H_eps-delHN-delHR-z)-0.5*c3**2 -g*H3;\n",
      "ctheta2 = delW/U2;\n",
      "alpha2 = (180/math.pi)*math.atan(ctheta2/c3);\n",
      "beta2 = (180/math.pi)*math.atan((ctheta2-U2)/c3);\n",
      "eff_H = delW/(g*H_eps);\n",
      "omega = (omega_sp*(g*H_eps)**(5/4.))/math.sqrt(Q*delW);\n",
      "\n",
      "Hs = (Pa-Pv)*(10**5)/(rho*g) - z;\n",
      "sigma = Hs/H_eps;\n",
      "omega_ss = omega*(Q**0.5)/(g*Hs)**(3/4.);\n",
      "\n",
      "##Results\n",
      "print'%s %.2f %s'%('The NSPH for the turbine = ',Hs,' m.');\n",
      "if omega_ss>4.0:\n",
      "    print'%s %.2f %s'%('\\n Since the suction specific speed (= ',omega_ss,')is greater than 4.0(rad), the cavitation is likely to occur.');\n",
      "\n",
      "\n",
      "##there is small error in the answer given in textbook\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The NSPH for the turbine =  8.00  m.\n",
        "\n",
        " Since the suction specific speed (=  7.67 )is greater than 4.0(rad), the cavitation is likely to occur.\n"
       ]
      }
     ],
     "prompt_number": 4
    }
   ],
   "metadata": {}
  }
 ]
}