summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter7_2hkovpj.ipynb
blob: d65c95f3190781f2693d159024442b4d62a6835e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
{
 "metadata": {
  "name": "",
  "signature": "sha256:a61692019b8140a36f6ac02790d0dad90729cb0b28691dad1652c231a1bf0a41"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter7-Centrifugal Pumps,Fans and Compressors\n"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg216"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "##function to calculate blade cavitation coefficient\n",
      "\n",
      "##given data\n",
      "Q = 25;##flow rate in dm^3/s\n",
      "omega = 1450;##rotational speed in rev/min\n",
      "omega_ss = 3;##max. suction specific speed in rad/sec\n",
      "r = 0.3;##inlet eye radius ratio\n",
      "g = 9.81;##in m/s^2\n",
      "\n",
      "##Calculations\n",
      "k = 1.-(r**2);\n",
      "sigmab = 0.3;##initial guess\n",
      "d = (sigmab**2)*(1. + sigmab)- (((3.42*k)**2)/(omega_ss**4));\n",
      "i = 0;\n",
      "if sigmab>0:\n",
      "\tsigmab = sigmab - 0.0001;\n",
      "elif sigmab<0:\n",
      "\tsigmab = sigmab + 0.0001;\n",
      "\n",
      "phi = (sigmab/(2.*(1.+sigmab)))**0.5;\n",
      "rs1 = ((Q*10**-3.)/(math.pi*k*(omega*math.pi/30.)*phi))**(1./3.);\n",
      "ds1 = 2.*rs1;\n",
      "cx1 = phi*(omega*math.pi/30.)*rs1;\n",
      "Hs = (0.75*sigmab*cx1**2)/(g*phi**2);\n",
      "\n",
      "##Results\n",
      "print'%s %.2f %s'%('(i)The blade cavitation coefficient = ',sigmab,'');\n",
      "print'%s %.2f %s %.2f %s '%('\\n (ii)The shroud radius at the eye = ',rs1,' m' and '\\n The required diameter of the eye = ',ds1*10**3,'mm');\n",
      "print'%s %.2f %s'%('\\n (iii)The eye axial velocity = ',cx1,' m/s');\n",
      "print'%s %.2f %s'%('\\n (iv)The NPSH = ',Hs,' m');\n",
      "\n",
      "#asnwer is wrong due to round off error"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)The blade cavitation coefficient =  0.30 \n",
        "\n",
        " (ii)The shroud radius at the eye =  0.06 \n",
        " The required diameter of the eye =  110.70 mm \n",
        "\n",
        " (iii)The eye axial velocity =  2.85  m/s\n",
        "\n",
        " (iv)The NPSH =  1.62  m\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg220"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "##given data\n",
      "alpha1 = 30.;##prewhirl in deg\n",
      "hs = 0.4;##inlet hub-shrub radius ratio\n",
      "Mmax = 0.9;##max Mach number\n",
      "Q = 1;##air mass flow in kg/s\n",
      "p01 = 101.3;##stagnation pressure in kPa\n",
      "T01 = 288.;##stagnation temperature in K\n",
      "gamma = 1.4;\n",
      "Rg = 287.;##in J/(kgK)\n",
      "\n",
      "##Calculationsasza\n",
      "beta1 = 49.4;##in deg\n",
      "f = 0.4307;\n",
      "a01 = math.sqrt(gamma*Rg*T01);\n",
      "rho01 = p01*1000./(Rg*T01);\n",
      "k = 1-(hs**2);\n",
      "omega = (math.pi*f*k*rho01*a01**3)**0.5;\n",
      "N = (omega*60./(2.*math.pi));\n",
      "rho1 = rho01/(1. + 0.2*(Mmax*math.cos(beta1*math.pi/180.))**2)**2.5;\n",
      "cx = ((omega**2.)/(math.pi*k*rho1*(math.tan(beta1*math.pi/180.) + math.tan(alpha1*math.pi/180.))**2.))**(1/3.);\n",
      "rs1 = (1./(math.pi*rho1*cx*k))**0.5;\n",
      "\n",
      "ds1 = 2.*rs1;\n",
      "U = omega*rs1;\n",
      "\n",
      "##Results\n",
      "print'%s %.2f %s %.2f %s '%('(i)The rotational speed of the impeller = ',omega,' rad/s'and 'N = ',N,' rev/min.');\n",
      "print'%s %.2f %s %.2f %s '%('\\n (ii)The inlet static density downstream of the guide vanes at the shroud = ',rho1,' kg/m^3.'and'\\n The axial velocity = ',cx,' m/s.');\n",
      "print'%s %.2f %s %.2f %s '%('\\n (iii)The inducer tip diameter = ',ds1*100,' cm'and '\\n U = ',U,' m/s.');\n",
      "\n",
      "##there are small errors in the answers given in textbook\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)The rotational speed of the impeller =  7404.94 N =  70711.94  rev/min. \n",
        "\n",
        " (ii)The inlet static density downstream of the guide vanes at the shroud =  1.04 \n",
        " The axial velocity =  187.38  m/s. \n",
        "\n",
        " (iii)The inducer tip diameter =  8.83 \n",
        " U =  326.81  m/s. \n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg228"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "##given data\n",
      "Q = 0.1;##in m^3/s\n",
      "N = 1200.;##rotational speed in rev/min\n",
      "beta2_ = 50.;##in deg\n",
      "D = 0.4;##impeller external diameter in m\n",
      "d = 0.2;##impeller internal diameter in m\n",
      "b2 = 31.7;##axial width in mm\n",
      "eff = 0.515;##diffuser efficiency\n",
      "H = 0.1;##head losses\n",
      "De = 0.15;##diffuser exit diameter\n",
      "A = 0.77;\n",
      "B = 1.;\n",
      "g = 9.81;\n",
      "\n",
      "##Calculations\n",
      "U2 = math.pi*N*D/60.;\n",
      "cr2 = Q/(math.pi*D*b2/1000.);\n",
      "sigmaB = (A - H*math.tan(beta2_*math.pi/180.))/(B - H*math.tan(beta2_*math.pi/180.));\n",
      "ctheta2 = sigmaB*U2*(1.-H*math.tan(beta2_*math.pi/180.));\n",
      "Hi = U2*ctheta2/g;\n",
      "c2 = math.sqrt(cr2**2 + ctheta2**2);\n",
      "c3 = 4.*Q/(math.pi*De**2);\n",
      "HL = 0.1*Hi + 0.485*((c2**2)-(c3**2))/(2.*g) + (c3**2.)/(2.*g);\n",
      "H = Hi - HL;\n",
      "eff_hyd = H/Hi;\n",
      "\n",
      "##Results\n",
      "print'%s %.2f %s'%('The slip factor = ',sigmaB,'');\n",
      "print'%s %.2f %s'%('\\n The manometric head = ',H,' m.');\n",
      "print'%s %.2f %s'%('\\n The hydraulic efficiency = ',eff_hyd*100,' percentage.');\n",
      "\n",
      "##there is a very small error in the answer given in textbook\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The slip factor =  0.74 \n",
        "\n",
        " The manometric head =  30.11  m.\n",
        "\n",
        " The hydraulic efficiency =  71.84  percentage.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg235"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "##given data\n",
      "T01 = 22.;##stagnation temperature in degC\n",
      "Z = 17.;##number of vanes\n",
      "N = 15000.;##rotational speed in rev/min\n",
      "r = 4.2;##stagnation pressure ratio between diffuser and impeller\n",
      "eff_ov = 0.83;##overall efficiency\n",
      "mdot = 2;##mass flow rate in kg/s\n",
      "eff_m = 0.97;##mechanical efficiency\n",
      "rho2 = 2.;##air density at impeller outle in kg/m^3\n",
      "gamma = 1.4;\n",
      "R = 0.287;##in kJ/(kg.K)\n",
      "b2 = 11.;##axial width at the entrance to the diffuser in mm\n",
      "\n",
      "##Calculations\n",
      "Cp = gamma*R*1000./(gamma-1.);\n",
      "sigmaS = 1 - 2./Z;\n",
      "U2 = math.sqrt(Cp*(T01+273.)*((r)**((gamma-1.)/gamma) -1.)/(sigmaS*eff_ov));\n",
      "omega = N*math.pi/30.;\n",
      "rt = U2/omega;\n",
      "Wdot_act = mdot*sigmaS*(U2**2)/(eff_m);\n",
      "cr2 = mdot/(rho2*2.*math.pi*rt*b2/1000.);\n",
      "ctheta2 = sigmaS*U2;\n",
      "c2 = math.sqrt(ctheta2**2 +cr2**2);\n",
      "delW = sigmaS*U2**2;\n",
      "T2 = T01+273.+(delW - 0.5*c2**2)/Cp;\n",
      "M2 =  c2/math.sqrt(gamma*R*1000.*T2);\n",
      "\n",
      "##Results\n",
      "print'%s %.2f %s'%('Absolute mach number, M2 = ',M2,'');\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Absolute mach number, M2 =  1.01 \n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}