summaryrefslogtreecommitdiff
path: root/Fluid_Mechanics,Thermodynamics_of_Turbomachinery_by_S.L.Dixon/Chapter6.ipynb
blob: 6c0dc07789d0f0fbac1499fb3bb86ba1fb182e9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
 "metadata": {
  "name": "",
  "signature": "sha256:eb1ff01409a2a11efc8e58678d7352672b2c4e7f5a219c5319629cbc273b0d97"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter6-Three-dimensional Flows in Axial Turbomachines"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg181"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "##given data\n",
      "dt = 1.0;##tip diameter in m\n",
      "dh = 0.9;##hub diameter in m\n",
      "alpha1 = 30.;##in deg\n",
      "beta1 = 60.;##in deg\n",
      "alpha2 = 60.;##in deg\n",
      "beta2 = 30.;##in deg\n",
      "N = 6000.;##rotational speed in rev/min\n",
      "rhog = 1.5;##gas density in kg/m^3\n",
      "Rt = 0.5;##degree of reaction at the tip\n",
      "\n",
      "##Calculations\n",
      "omega = 2.*math.pi*N/60.;\n",
      "Ut = omega*0.5*dt;\n",
      "Uh = omega*0.5*dh;\n",
      "cx = Ut/(math.tan(alpha1*math.pi/180.) + math.tan(beta1*math.pi/180.));\n",
      "mdot = math.pi*((0.5*dt)**2 - (0.5*dh)**2)*rhog*cx;\n",
      "Wcdot = mdot*Ut*cx*(math.tan(alpha2*math.pi/180.)- math.tan(alpha1*math.pi/180.));\n",
      "ctheta1t = cx*math.tan(alpha1*math.pi/180.);\n",
      "ctheta1h = ctheta1t*(dt/dh);\n",
      "ctheta2t = cx*math.tan(alpha2*math.pi/180.);\n",
      "ctheta2h = ctheta2t*(dt/dh);\n",
      "alpha1_ = (180./math.pi)*math.atan(ctheta1h/cx);\n",
      "beta1_ = (180./math.pi)*math.atan((Uh/cx) - math.tan(alpha1_*math.pi/180.));\n",
      "alpha2_ = (180./math.pi)*math.atan(ctheta2h/cx);\n",
      "beta2_ = (180./math.pi)*math.atan((Uh/cx) - math.tan(alpha2_*math.pi/180.));\n",
      "k = Rt*(0.5*dt)**2;\n",
      "Rh = 1 - (k/(0.5*dh)**2);\n",
      "\n",
      "##Results\n",
      "print'%s %.2f %s'%('(i)The axial velocity, cx = ',cx,' m/s');\n",
      "print'%s %.2f %s'%('\\n (ii)The mass flow rate =',mdot,' kg/s');\n",
      "print'%s %.2f %s'%('\\n (iii)The power absorbed by the stage = ',Wcdot/10**6,' MW');\n",
      "print'%s %.2f %s %.2f %s %.2f %s %.2f %s'%('\\n (iv)The flow angles at the hub are:\\n alpha1 = ',alpha1_,' deg'and '\\n beta1 =',beta1_,'deg'and '\\n alpha2 = ',alpha2_,'deg' and'\\n beta2 = ',beta2_, 'deg.')\n",
      "print'%s %.2f %s'%('\\n (v)The reaction ratio of the stage at the hub, R =.',Rh,'');\n",
      "\n",
      "\n",
      "##there are small errors in the answers given in textbook\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(i)The axial velocity, cx =  136.03  m/s\n",
        "\n",
        " (ii)The mass flow rate = 30.45  kg/s\n",
        "\n",
        " (iii)The power absorbed by the stage =  1.50  MW\n",
        "\n",
        " (iv)The flow angles at the hub are:\n",
        " alpha1 =  32.68 \n",
        " beta1 = 55.17 \n",
        " alpha2 =  62.54 \n",
        " beta2 =  8.75 deg.\n",
        "\n",
        " (v)The reaction ratio of the stage at the hub, R =. 0.38 \n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg185"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#calculate the\n",
      "\n",
      "\n",
      "%matplotlib inline\n",
      "\n",
      "import warnings\n",
      "warnings.filterwarnings('ignore')\n",
      "from math import log\n",
      "import numpy\n",
      "##given data\n",
      "\n",
      "R = 0.5;##degree of reaction\n",
      "Cp = 1005.;##kJ/(kgC)\n",
      "cx1_Ut_rt = 0.4;\n",
      "delT0 = 16.1;##temperature rise\n",
      "Ut = 300.;##in m/s\n",
      "\n",
      "##calculations\n",
      "A1 = cx1_Ut_rt**2 +(0.5-0.18*math.log(1));\n",
      "c1 = 2*(1.-R);\n",
      "c2 = Cp*delT0/(2.*Ut**2 *(1.-R));\n",
      "A2 = 0.56;\n",
      "k = numpy.linspace(0.4,1.0,num=61);\n",
      "i=len(k)\n",
      "\n",
      "cx1_Ut=numpy.zeros(i)\n",
      "cx2_Ut=numpy.zeros(i)\n",
      "R_=numpy.zeros(i)\n",
      "Rn=numpy.zeros(i)\n",
      "import numpy\n",
      "import matplotlib\n",
      "from matplotlib import pyplot\n",
      "\n",
      "for i in range(1,61):\n",
      "    cx1_Ut[i] = math.sqrt(A1 - (c1**2)*(0.5*k[i]**2 - c2*math.log(k[i])));\n",
      "    cx2_Ut[i] = math.sqrt(A2 - (c1**2)*(0.5*k[i]**2 + c2*math.log(k[i])));\n",
      "    R_[i] = 0.778+math.log(k[i]);\n",
      "    Rn[i] = 0.5;\n",
      "\n",
      "\n",
      "##Results\n",
      "pyplot.plot(k,cx1_Ut);\n",
      "pyplot.plot(k,cx2_Ut);\n",
      "pyplot.title(\"Solution of exit axial-velocity profile for a first power stage\")\n",
      " \n",
      "pyplot.plot(k,R_);\n",
      "pyplot.plot(k,Rn);\n",
      "#ylabel(\"Reaction\",\"fontsize\",3) ;##y label \n",
      "#legend([\"True Reaction\";\"Nominal Reaction\"] , opt=1); ##legend box\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 7,
       "text": [
        "[<matplotlib.lines.Line2D at 0x5b06bb0>]"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEKCAYAAAAb7IIBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXd4VEXXwH+TnkAITVoIvVcB6b0XpSgiwotiRxF99dXP\nrvjaXrsoFhAERERsNKkiEHooSpUiHUKvAgmbOt8fc0OWmL6b7M3m/J5nnr279+7cM7fMmTlz5ozS\nWiMIgiAUPnw8LYAgCILgGUQBCIIgFFJEAQiCIBRSRAEIgiAUUkQBCIIgFFJEAQiCIBRSbK0AlFJV\nlFLJSqlcyamU+pdSarG75crGedsqpfYqpS4rpfq5Md8vlFIvuSu/LM51WSlVJRvHuXSPMsm3k1Lq\nqIt5VLLKodwllztRSr2hlDqjlDqulIpwllUpFamUuj+X+d6qlDpq5dfYvVJn6/wZlkuwF/miAJRS\n7ZRSa5VSF5VS55RSq5VSN7n5HP+oiLTW32qte7rzPNnkNeATrXWo1nquuzLVWj+itX4D3FNBZnGu\nUK31obzKPz/QWh+xyqHBtUrV3SilKgH/AeporStorY86ywpoK+WG94GRVn5b3SFvdslGuXKS1z1K\nqVXul9Ie2KF8fnl9AqVUMWAeMAL4AQgE2gNxeXXKPMo3J1QCdnpaCOEf5NusR6WUr9Y6KZNDKgHn\ntNbn3HxehQvPn1LKR2ud7III2S5XSq8gN8rBrrjh+uUvWus8TcBNwIVM9ivgJeAQcAr4Gihm7asC\nJAM+1vdDQFen/74KfGNtH7GOvQxcAloB9wCrnI5vA2wELgIbgNZO+yIxLffV1v8XA6UykftBYC9w\nDpgDlLd+3w8kAbFWPv7p/LcC8DNwGjgAPGb9XhI4CtxifS8K7AOGWd+nAK8DIcBV6zwp5S2Xznlu\nBjYDf1vXZ7TTvsHWuUOt772BEylltq5ltWzkc909SnP+wcDGNL89CcyxtgMxrdXDwEngCyDI2tcJ\nOOr0v7rWPboA7AD6Ou0LBj6wno+LwCor7xTZfIE3gUTrul0GxgKfAu+nkW8u8EQG9zwZeMy6x2eA\ndwFl7bsHWAN8CJy1nqViwFTrPh8CXsQ8792s5yPl/k1Kex2B5cB9Tue+D1OpnwcWAZXSkS8QuGLl\ncwXYm41rN8W67gus/3RJJ997rXNfssr+UAbXJzvligTesK5VLFDdunb7rfwPAEOBOoDDumeXgfMZ\nnDMS+B+wHvN8zgZKOO3vB/xplX05pmeSUqa5TsftBX5w+n4UaGRt1wGWYN713cCgHF6/bJePTN41\na//dmPflLKn1ZlenuvQ5TJ1xFvje+Vqke/1yWqHnNAGhljBTgF5pBcI82HutB6UIpmKcml7lAhx0\nvsDAaFIVQGXSVEQ4KQBM5XoB+BfG9HUn5mUq4fQg7QVqAEHWw/K/DMrUBVMB3AgEAJ8AK5z2Xydn\nmv/6AL9bN88PqGo9HD2s/d0xFfENwIQ0D+Vk4DVruyNOFWQG5+oI1Le2G2Iq2f5O+6dZeZYCjgF9\n0lR21bLKJ+09SnP+YMxDX8Ppt43AHdb2R5gXtjhG2c0F3rL2dUopH+CPeaifs65ZZyvfWtb+z4Bl\nQHnr+ray7kva5ydtpdrcKndKJV4aiAFuyOB6JgNLLXkjgD3A/U7PWgLwqCVDEKbyn4V5ritbx9+X\n3v3LTFagP+bZrG3l/SKwJpP77nzvsrp2UzBKs7X1PTCd/PoAVa3tDtY1apLJM5dZuSIxlVZdqyxh\nmMquprW/LFDP2h6OUwMug/NFAtFAPUzD6CdS64RamEq5K6YR8H/WdfQDqmE1TDENskPAEet7NVIr\n5CIYZTDckvdGzLtfNzvXz/p/tstH5u9aPYyyaGPd1/eAeKy6Bvg3sNYqjz8wDpie6fXLbKe7Ekbb\nTbYuZAKmxVzG2rcUeNjp2FpWoXzSeXjSKoBXnW72dcc6vZQpCuAuICqNXGuB4U4v3AtO+x4BFmZQ\nnq+At9Pc5HisVllaOdP8tyVwOM1vzwOTnL5/Amy3rpdza2Yy8Lq13YksFEA65x4DfOj0PQzTmtgG\nfJFRJZJZPuld9zTHfgO8bG3XxFQ+QZjWyhXncwCtgQNpy4cxGZ5Ik+90TAPAB9OSbJjOudM+P8ux\nKmynY3YC3aztUcC8TK5fMpaidnpGfnN61g477fPFmDnrOP32ELA8vfuXgawpCmAh1ysuH0wlHJGJ\nnCkKIMNrZ21PAabk8DmaBTyewb7slOvVNO/OBeA2IDhNXveQtQJYjtVosL7Xta67D/AyMMNpn8Io\niw7W9yNAE0xjcDwQhVGy9wKzrWMGAyvTnHM88Ep2rp8byuf8rr0CfOu0L9gqa4oC2Mn19WN5rLo0\no/zzZRBYa71ba32v1joCaIDRUGOs3eUxlVAKRzAauqybxahg5e3MYev3FE46bV/FtErT4zqZtdYx\nmO5heDbkqAxUUEpdSEkYBVDG6ZgJQH3Mg3UhG3mmi1KqpVJquVLqtFLqImYcppST3H9jWkwNMCaU\nXOXjdFx7y+PjslJqu/XzdGCItT0UmKW1dmB6OCHA707XYSGmFZ6WChhl6EzKvSuFUSj7M70Yqeg0\n36cCw6ztYRiFlRnOchzh+ufHeV9pTCss7bOdnWckLZWBj52uU4p9PTt5ZXbtwFyPTJ0JlFK9lVJR\nlgPHBUyP4B/3PwdcO5/17gwGHgaOK6XmKaVq5zY/zDX2x1z/8ji989rUikdJvW4rMAqrvbW9AtMC\n72Btg7n2LdO8r0NJrZ8yvX45LV8W71oFjAJLyfsqqc8CGGU7y0nOnRgTU4Z1ab67gWqt92Ds/A2s\nn45jBE+hEkboU+n8PQajUVMo55x1Fqc+hrmZzlS2fs8p18mslCpCqhklK44AB7XWJZxSMa31LVZe\nvsCXmIrpUaVU9TT/12k+M2M6xsRSUWtdHNMlvHbPlVI3Ylo70zE28Vzlc00wrVdp4/ERqrVuaP38\nG3CD5Y54p5UXGLPgVUx3OOU6FNdaF0vn/MeBiDSuhCn37izGllojswuRImI6v00D+lvy1bHKmRmV\n0mw733Pn/M9iertV0hwfTc45grG7Oz8zRbTWUdn4b2bXLkuUUoEYs+y7mF57CYy92xVni+vug9b6\nV611D8z7vBvTAPrHcZmQ9p4kYMw0x3F6561rEEFq2VdgTGLtMaakFIXQkVQFcARj3nW+9qFa60ez\nKVtOy5feu5ZyrY8DFZ3KE8z1ivgI0CuNrCFa6xMZyZbnCkApVVsp9R+lVLj1PQLTIlxnHfId8KTl\nxlkUeAvTbUtvJH0LcKdSys9yIx1I6kU8g+lqpq0wU1gI1FJKDbH+Pxjzws9zFjebxfoOuFcp1dh6\nQd7CmJfS9jDSYwNwWSn1jFIqWCnlq5Rq4OQW+wJmEO1ejI1vqpNrq3KS8RRQyvKyyoiiGDtnvFKq\nBablYvrCSgVhKr/nMeMw4UqpR3KaT1ZorROAHzGDvSUwg2lY93cCMEYpdYMlU7hSqkc62azHmHme\nUUr5K6U6AbdgnhONGWz8UClV3rqerZVSAenkc4o0z4fWOhrYhFG4P2mts/JOe1opVdx6jh/HDLSl\nV+4kjNfbm0qpokqpypgB8GlZ5J8e44AXlFL1AJRSYUqpQdn8bxQZXDtrf1bPfICVzgLJSqneQHr3\nKCdcO6dSqoxSqr/ViErANPJSvKdOARWVUv5Z5DVMKVVXKRWCGXz/0XoufgRuVkp1sfJ4CtNYWGv9\nN0UBBGmtj2McQHphxgs3W8fMw9Qbw6zr56+Uaq6UqpO2LOkKl/PypfeupfAz0Nfp+X41zfnHAW9Z\nrrgopW5QWc1Dysz+5I6E6bZ8j2n5XLE+vwCKOtnlXsZor9OYFzFMp9oPk0i1H1bFPNCXMTdmDNaA\nsbX/v1Ye5zG29uE42e+AtpiX/SJmMLKN075rNlfr+3X/TadcIzCDa+cwg5cVnPZlOAbgZJubjhns\nPY95ILsAzazvKfZbH8xD+bz1fTLWILD1/SvMi3me9L2ABmIGty4Bv2Ba+SkD7B8B852ObWSVpbr1\nPclJjrT5fML1A/XX7lEG5W2HUc5j0/weiPHO2Y8ZKNsJjLL2dcIalLO+18O00i5iPFmcB7ODrPJE\nW/sjSfUCcn5+WmEGYs8DY5z+P8ySr2MWz3IyZpxgv3Xd3yN1APkfzwtmsPgbzDN5BDPwrzIoX1pZ\n0z6PwzBjNSneIRMzkfPavcvGtbvumcogv5EY8+gFzPs5PaP/5KJc5Zxku4AZzE/x1PHHvOfngNMZ\nnG85pgGW4gU0ByjptH8AxgvoonVs3TT/Pw585fR9I07vhfVbLUuO09Z9/41UD6FMr19Oy0cm75rT\nc+bsBRQNtHWqS5/E9DIuYeqnNzK7tykPY65RSvXCVMS+mIfynTT7S2NaPeUwtv33tdZTXDqpILgR\npVR7YJrWOq2JMO1xyRiPpgP5I5mQFUqp5RhHkEmeliW/sSwmFzDP5OGsjk8Pl0xAlr36U0y3qR4w\nRClVN81ho4DNWusbMa2DD5RSeT4BTRCyg9X9foJUu6xQ8LDD5M98QSnVVykVYpmU3ge25bbyB9fH\nAFoA+7TWh7Sx9c7A+Cw7cwIzIQbr85zWOtHF8wqCy1iNlQsYL4kxWRwO+TiTWMgRhem+9MMMYh/D\njGfd6UpmrrbEw7neBSoaY3t3ZgKwTCl1HDMp7A4XzykIbkFrvYuMXX3TO943D8URcoHWurOnZchP\ntNYPYqIQuAVXewDZ0bwvAFu01hUws+g+U0qFunheQRAEwUVc7QEcw/jVphDBP/2c22A8PdBa71dK\nHcTMttuUcoBSqjB14QRBENyG1jrXYyCu9gA2ATUtH/4AzIy3tOGPd2OCRKGUKoup/P/hRZHWPenF\npS/y+orXSUpO4s/TfzJ582Qe/uVhmoxrQsibIdz05U08Ov9Rpm6Zyp6ze0hKTspzl9bcptGjR3tc\nBimflK8wls+by6a16+1ml3oAWutEpdQoTORMX4w/7S6l1Ahr/3iMj+5kpdRWjMJ5Rmt9Pqu8HYkO\nigcVx0f5UO+GetS7oR733HgPALEJsfxx4g/WR6/nl79+4aXlL3E57jItwlvQqmIrWoa3pGXFlpQM\nLulK8QRBELwal90xtdYLMbNsnX8b77R9Fuib03wdiQ6C/ILS3RfiH0K7Su1oV6ndtd9OXjnJ+uj1\nREVH8d7a99h0fBPlipajVcVW11LDMg3x981sUqEgCELhwbb++JkpgPQoV7Qc/ev0p38d44WalJzE\nzjM7WX/MKIXPN37OoYuHaFK+Ca3CU5VCeLHcxObKGZ06dcrzc3gSKV/BxpvL55Vli4+HOXPgyy9d\nzsrlmcDuQCml08oxbOYwetXoxbBGwzL4V865FHeJjcc2si56HVHRUURFRxHiH3JdL6Fp+aY5UjyC\nIAj5woEDMGECTJ4MderAiBGooUPRLgwCe00PIDsUCyxG12pd6VqtK2AGnvdf2E9UdBTrjq5j2rZp\n7Dm3h4ZlGtK6YmtaR7SmdcXWRIRFZJGzIAhCHpCYCPPmwbhxsGkT3H03REYaBQAwdGimf8+KQqUA\n0qKUokbJGtQoWeNaTyMmPoZNxzexLnod327/llELRhHgG0DriNa0qdiG1hGtaVKuCYF+gXkqmyAI\nhZjoaJg40aQqVWDECJg1C4KD3XqaQq0A0qNIQBE6VulIxyodAdNLOHDhAOui17H26FqmbpvKX+f+\n4sZyN9KmYhvaRBilUK5ouSxyFgRByITkZPj1V9PaX7nStO4XLoSGDbP+by6x7RhAu0nteLvb29d5\n+tiFy3GX2Xh8I2uPrmXt0bVERUdRPKg4bSKMQmgb0ZYGZRrg6yORAwRByIKzZ2HSJBg/HsLC4JFH\nYMgQKJp1lBKllIwB5DehgaF0qdqFLlW7AJCsk9lzdg9rjq5h7dG1fLL+E05cOUHL8Ja0jWhLm4g2\ntKrYitBAiYAhCAKgNaxdC198AfPnw4AB8N130Lw5qPwLbmrbHkCDzxsw4/YZNCjTIIN/2ZuzsWdZ\nd3Qda46uYc3RNWw+sZlapWrRNqItbSu1pW1EWxlcFoTCxpUr8O238Pnn4HDAww/D8OFQMneTVl3t\nAdhWAdT4pAaLhi2iRsnsLPVqf+IS4/jjxB/XFMKaI2sI9g82E9oizKS2+mXq46PyfJVOQRDym507\nTWv/22+hUycYORK6dnW5te+1CqDihxWJeiCKisUqZvCvgo3Wmn3n97H6yGqTjq7mdMxpWldsTbtK\n7WhfqT3Nw5vb1gwmCEIWJCaaCVuffQa7dsGDD5oU4b6ev9cqgNLvlmb3qN2UDintIanyn9Mxp1MV\nwpHV7DyzkxvL3Uj7Su1pV6kdbSu1pXhQcU+LKQhCZpw6ZSZsjRsHVavCqFFw660QEOD2U3mtAij6\nVlFOPn2SogHZXq/D67gSf4X10etZdWQVq46sYsOxDVQvUZ32ldrTvnJ72ldqT/nQ8p4WUxAErWHd\nOvj0U+O6eccd8Oij0KhRnp7WaxWA32t+OF5y4OdjW0elfCc+KZ4/TvzBqsNGIaw+sprSIaXpULkD\nHSp3oGPljlQunum65oIguJOrV2HGDFPxX7pkKv177oHi+dNT90oFkJicSNAbQSS+IksHZ0ayTmbH\n6R2sPLzyWgr0CzQKoVIHOlbpSM2SNVH56FYmCIWCQ4fMoO6kSdCiBTz2GPToAT7568ThlQrgSvwV\nyr1fjisvXPGgVAUPrTV7z+9lxaEVrDyykhWHVpCYnHitd9CpSifqlK4jCkEQcoPWJg7PJ5+YmbrD\nhxtvnhqe81T0SgVwNvYsdT6tw9lnznpQqoKP1ppDFw+x4vAKkw6tICYhhk5VOl1TCHVL1xWFIAiZ\nERNj3DfHjjXhGh57DIYNy9ZM3bzGKxVA9KVoWk1sRfR/0i4vLLjK4YuHWXF4BZGHIok8FElMQgwd\nK3ekc5XO0kMQBGcOHzYunJMmQdu28Pjj0KVLvs7UzQqvVAD7zu+j17Re7Ht8nwelKhwcvnjYKIPD\nkSw/uBxHooNOVTrRuUpnulTtQo2SNUQhCIUHrWHVKvj4Y2PuueceM7BbrZqnJUsXr1QAO07v4M6f\n7mTHyB0elKpwcujiIZYfXM7yQ8tZdnAZwLW4R52rdBYvI8E7cThMLJ5PPjGePY8/bmLv28DMkxle\nqQA2Hd/Ew/MeZtNDmzwolZAyW3nZwWXXFEKxwGJ0qdqFrlW70rlqZ8oUKeNpMQUh95w8abx5xo+H\nJk3giSege/d89+bJLV4ZDdTOkUALE0opapaqSc1SNRlx0wi01uw4vYOlB5fy7fZvGTFvBJXCKtG1\nale6VetGh8odJOKpUDD44w8YMwZ++cWEXnZeZasQYcsewG8HfuPt1W/z292/eVAqISsSkxPZdHwT\nSw8sZenBpWw4toEby914TSG0rNiSAF/3T38XhFyRlARz58JHH8HBg8ab54EHch2J0w54pQlo3l/z\nGLdpHPOGzvOgVEJOiU2IZfWR1Sw9sJTfDv7GvvP7aF+pPd2qdaN7te7Uu6GeDCgL+c/ly2Yh9Y8/\nhhtugCefhNtuA39/T0vmMmICEmxDiH8IPar3oEf1HoCZz7Hs4DJ+O/AbH6//mLjEOLpX7073aiaV\nLVrWwxILXs2RI8Z3f9Ik4745bRq0bu1pqWyFKAAhzygdUpo76t/BHfXvuLa28q/7f2Xmrpk8tvAx\nKodVpnu17vSo3oP2ldvLPRfcw8aN8OGHZn3d4cPh99/NwurCP7ClCWjiHxOJio5iYr+JHpRKyEsS\nkxPZeGwjv+7/lcX7F7P99HbaRrSlZ/We9KzRU2YoCzkjKckM6H74oZnA9e9/G/t+sWKelixP8cox\ngE83fMrus7v5tM+nHpRKyE8uOi6y9MBSFu9fzOL9i0nWyfSs3pNeNXrRrVo3WQdBSJ/YWPj6a1Px\nlygBTz0FAweCny2NG25HxgAEr6B4UHEG1hvIwHoD0Vqz59weFu1bxFebv+K+OffRqGwjetXoRa8a\nvWhavqksnVnYOXXKhGkYN86EaZg82XxKrzFHiAIQbIdSijql61CndB2eaPUEVxOusurIKhbtW8Rd\ns+7i/NXz9Kzek941etOjeg9KhZTytMhCfrF7N3zwAfz0E9x5J6xeDbVqeVqqAostTUAvLXsJlRRE\n98CXSE42Afi0Tv1MPw8zec/H5/ptHx/TG/T1TU1+fsYDLOUzJQUEmOTnJw0JO3Po4iEW7l3Iwn0L\nWXF4BfVvqE/vGr3pU7MPTco3kd6Bt6E1rFkD774L69ebEMwjRxqXzkKOV44BPP3r0+zcUI4dXz5N\ntWr/rNzTw1lJpGwnJZntpCSzPnNSUup2QkLqp3OKjze/pyiDgAAICjIpMDB1OygIgoOvTyEhqalI\nkdTPIkVMSJG0KTTU5CnKJvfEJcax8vBKFuxdwIJ9C7gUd4k+Nfpwc62b6VatG8UCvXsQ0KtJSjKL\nqr/3Hpw5A08/bbx6goM9LZlt8EoF8Oj8R9kXVZcOQaN48cX8lyc5OVUZxMWZ5HCkprg4Ey8qbYqN\nTU0xMSbFxsKVK6nfr1wx6fJl85mUZBRBaKhxWAgNhbAwsx0Wdn0qXvyfqUQJo2BEiRj2nd9nlMHe\nBaw9upYW4S24pdYt3FLrFmqU9NzCHUIOcDhg6lR4/30zS/f//g8GDDDdd+E6vHYQODk+iBAPzdD2\n8TEt88BAUyHnJfHxRhmkpEuXTPr7b5NStk+dgosX4cIF8+m8nZBgFEFKKlkSSpVK/UzZLl36+hTk\nhcMsNUrW4PGWj/N4y8eJiY9h6cGlzPtrHu+ueZfQwFBuqWmUQbtK7fD3LfgzQb2KCxdMYLaxY+Gm\nm2DiRGjfXlo3eYg9FUCSg6S4YEJCPC1J3hMQkFpJ55a4OPPupKTz5+HcudS0fTucPWu2nT/9/Y0i\nKFPGmFOdP8uUgbJlUz9vuKHgzZwvElCEfrX70a92P7TWbD65mXl/zeOZ355h//n99KzRk761+tK7\nRm9KBJfwtLiFl+hoE59n8mTo1w+WLIEGDTwtVaHAngog0UGSI6hQKAB3EBgI5cqZlF20NiaoM2dM\nOn069fP4cdiyxWyfOmU+z541ZqmU86RNFSpA+fLmMyzMfo02pRRNyzelafmmvNLxFY5fPs78v+Yz\nY8cMHp73MM0qNKNvrb70r92f6iWre1rcwsGuXca+P3u2WXhl61aIiPC0VIUK2yqABFEAeYpSqWMP\n2VnsKDnZ9BxOnTIh1J3T5s1w4oRJx48bk1SFCiaFh6d+pqSKFc1vgYF5X86MqBBagQebPciDzR4k\nNiGWpQeWMnfPXN5d8y6lQkrRv3Z/+tfuT/Pw5uJV5G6iouCdd2DtWhg1CvbtK9AROQsyLisApVQv\nYAzgC0zUWr+TzjGdgI8Af+Cs1rpTZnk6Eh0kXg2SwX4b4eNjzEA33JB17/zKlVRlcOyY+YyOhg0b\nzGfKbyVKGGWQkipVMg3AlM8KFfLH7BTiH0Lf2n3pW7svyTqZDcc2MGf3HO6dcy8XHRfpV7sfA+oM\noHOVzgT6eVBrFWS0Nqad//3PhGJ++mmz0Lq08jyKS15ASilfYA/QDTgGbASGaK13OR1THFgD9NRa\nRyulSmutz6bJ5zovoLaT2hIz+13G/KctnTrlWjzBxiQlGdNSdDQcPZr6eeSI+Tx61PQ2ypaFypWN\nUqhcOTVVqWI+87r++OvcX8zZPYfZe2az88xOetXoxYDaA+hds7e4mGaHpCSYNctU/A4HPPecmcBV\n0AaUbIpH3UCVUq2B0VrrXtb35wC01m87HTMSKKe1fiWTfK5TAM2+bMbVH75kylvNaNEi1+IJBZyE\nBNNTOHzYpCNHUrcPHTKfYWFGGVSpYkxZVaumflaq5N565uSVk8zdM5fZu2ez+shqOlTuwG11b6Nf\n7X6UDintvhN5A/HxpoX/9tumq/f889C3b4FZarGg4Gk30HDgqNP3aKBlmmNqAv5KqeVAKPCx1vqb\nzDJ1JDqIj5UxgMKOv39qiz89kpNNL+HgQZMOHTITRb/7znw/ccKYkapVg+rVTUrZrlEj54EiyxUt\nx0PNHuKhZg/xt+NvFuxdwMzdM3ly8ZM0Ld+U2+rcxq11b6VisYoul73AEhsLX31lBndr1zaxejp1\nsp9XgAC4rgCy033wB5oCXYEQYJ1SKkprvdf5oFdfffXa9oVzF/CNEQUgZI6Pj/E8Kl8e2rT55/6E\nBNNL2L8fDhwwn1FR5nP/fjMbu0aN61OtWlCzZtbKISwojCENhzCk4RCuJlw16xzsnsnoyNHULl2b\n2+vezsB6A6lSvEqelN12/P238eEfM8YsuvLzz9C8uael8joiIyOJjIx0W36umoBaAa86mYCeB5Kd\nB4KVUs8CwVrrV63vE4FFWuufnI65zgQU/mE48Z9tYPua8By5NgpCdtHa9BD27UtNf/0Fe/ea7dDQ\nVGVQq5ZZL7x2bdODCMhkmeP4pHiWH1zOTzt/Yvae2VQOq8zt9W7n9nq3e+dM5LNnzVKLX3wBvXoZ\nG7/48Ocbnh4D8MMMAncFjgMb+OcgcB3gU6AnEAisBwZrrXc6HXOdAij1bini3/+LY/tKeft6DoIN\nSU42Yw979xql8NdfsGePSUePmrGF2rWNUqhbN/WzRJq5ZInJiaw8vJKfdv7EzF0zqRBagTvq38Gg\neoMK/lyDkydNVM6vvoLbb4dnnzW2NSFf8XgsIKVUb1LdQL/SWv9PKTUCQGs93jrmaeBeIBmYoLX+\nJE0e1ymAIm8VwfH6aRyXioizgGAr4uKM+WjPHhOZeNcu87l7t4lRVq9eaqpb13yWLQvJOolVR1bx\nw58/MHPXTMKLhTOo3iAG1x9M1RJVPV2s7HP0qInK+e23MGyYidMjk7c8hscVgDtwVgBaa/xe98Pn\nzTgS4mw5T00Q/oHWZn7D7t2wc+f1KTkZ6tc3qUEDqFMviSslV7E4+nt+3vUzVUtUZXD9wQyqN4iI\nMJtWpgcOGFfOn382Sy3+5z85m3ou5AlepwASkhIIeSuEIh8kcPGihwUTBDdw+jT8+Sfs2HH9p78/\n1G+YSPF7N5gxAAAgAElEQVQmyzlbdgbbEmZTv0xdhja6k0H1BlG2aFlPi27sX2+9ZdbbHTkSnnjC\ntcBVglvxOgVwOe4y5T+oQLFPL3P8uIcFE4Q8IqXHsGOHCda3fTts3RHP7oRfCWg2g7hK86jk24Le\nEUN4oO1tNKwZlr8u9Dt3wptvwq+/wmOPweOPm/jjgq3wOgVwJuYMtcfWo+TEM+zb52HBBCGfSUw0\nje6NW2KZ9ecvRMV8x+kiy/E93JUaV/9F5/CbuenGIG680ZiU3B5P6c8/4fXXYdky09ofNSrnEyaE\nfMPrFMDRv4/SfHwbykw7yrZtHhZMEGzARcdFvt74M1N+/5Y9f2+hwqVbSd7yL05EdaRWDV+aNoUm\nTaBpU2jcOJdrWGzfbir+FSuMff/RR81ECcHWeJ0C2HtuL10m9SH8571ERXlYMEGwGdGXopmxYwbf\nbv+W01fO0LXMUKpevovT2xvyxx/GpFSxIjRrlpqaNs2kEb9tG7z2mllc/amn4JFHpOIvQHidAth+\najv9pw6l8oLtLF/uYcEEwcb8efpPpm2bxrTt0ygVXIq7Gt3FHXWHcjG6PL//zrW0datRCjfdZFLz\n5tDUfzsh7/3XVPz/93/w8MNmbVGhQOF1CmDjsY0MnT6SWpEbmT/fw4IJQgEgWSez4tAKpm6byuzd\ns2kZ3pLhjYczoM4Agv2DSUw08xU2bYLoRTtoteQ1Gl1YybRyT7Ov+yPc2LYILVsaF1U/8bwuUHid\nAlh1eBUPff8CDTau4scfPSyYIBQwYhNimb17Nl9v/ZqNxzZye73buefGe2h9KQz12msQGQlPPUXc\nA4+ybX8RNm406zSsX2/meDVtCi1aQKtWJlUsxHHtCgJepwCW7F/Ckz+9S7OdS/j6aw8LJggFmOhL\n0cyf9xHlP5pA292xbB3ahdqjxxJeoXa6x//9N2zcaJTB+vWwbp3xMmrVysR3a9XKKAhZqMk+eDoc\ntNtxJDpQyRIJVBBc4sABKr7+OiPmzUM//n9smtqGH/b/yA/ftKZlxZbcd+N99Kvd77oVzsLCoFs3\nk8DMVThwwERQjYoyYbZ37YKGDaFtWxOBtU0bE41VKJjYrgfw458/8sasH+h24Uc++MDDgglCQePI\nEXjjDZg50/jwP/HEdRO4YhNimblrJpM2T2L76e0MbTCU+5veT6OyjbKVfUyM6SWsXZuawsKgXTto\n39581qkj677kF97ZA0iSHoAg5IgTJ0ysnm+/hREjzGyydBZaD/EPYVijYQxrNIwDFw4wefNk+nzb\nh/Bi4TzY9EEG1x9MaGDGEwmKFDHru6Qs1ZqcbOIfrVljHIreeQcuXjQ9hPbtoUMHYzaSoI72xHY9\ngAm/T+Cz2RsYHDKB55/3sGCCYHfOnjXROb/6CoYPN/H4y5TJURaJyYks3reYiZsnEnkokoF1B/Jg\n0wdpEd4ClYuVvI4fN8pg1SpYudKYkVq1MsqgQwdo2RKCgnKcrZAOXtkD0InSAxCETPn7bxOP/7PP\nYPBgM6ErPDxXWfn5+HFzrZu5udbNnLh8gq+3fs3QmUMJDQhlRLMR/KvRvygWmP1wEBUqwB13mARw\n/rzpIaxcaaYc7Nxp5iKk9CREIXgO21nqHIkOdIIoAEFIl9hY0+KvWdP4bW7aBJ9/nuvKPy3lQ8vz\nXLvn2PvYXt7r/h5LDy6l8pjKPDj3QTYd35SrPEuWNOvBv/eecTk9fhyeecYU5ZlnoHRp6NzZRKJY\ns8Ys5SnkD7bsASTHiwIQhOuIj4cJE0yEzrZtTcyeunXz7HQ+yofu1bvTvXp3Tl45yaTNkxj04yBK\nh5Rm5E0jGdxgMCH+uXtJixWD3r1NArh82ZiLli83QUf37jVF7NLFeCQ1biyDynmF7cYAXlz6IrN+\nDOHNni9y660eFkwQPE1SkhnYHT3auNe88YYJ8OMJUZKTWLx/MZ9v/Jyo6CiGNx7Owzc9TM1SNd16\nnvPnjX5butSks2dTlUG3blC1AC2gltd43USwpxY/xbwZFbhl6FAmBkk8aKEQk5gIDgcoZYzkvr6e\nlugayTqZ+KR4EpIS8PXxIcA3ED+fvDEoaG0uRUoC8PcDP3/w8wVyXf0VfC516OB9g8CJjiDOBFzl\n8YoVeVrWGxUKG6tXw3//C1euwCuvQK9eRgnYEEeig9m7ZzP+9y+5cPU89ze5n7sa3UXx4LxZPEZr\nM4i8bBksXQYbN5iJaV26QNeuJix2YTIXuXqVbdcDuH/O/fw2pQ2tn+5Am8rBPC7BSITCwtatxo1z\nzx4TonnIEFu1+rNiffR6xm4Yy/y98xlUbxCPt3ycBmUa5Ok5r1413kWLF5t0+jT06GHGF3r0yLFH\nbIHDVROQ7XSlI8lBwtUg4nyTKFqAHn5ByDUHD8KwYdCzJ/TpY2ZWDRtWoCp/gJYVWzLttmnsfnQ3\nEcUi6PFND7p/0535f80nWSfnyTmDg81l+/BDs5jZpk3QsaNZu75WLeNuOnq0mb2cnDciFGjspwAS\nHSTEBuHwSSS0gL0AgpAjzpyBf//b1FI1axr3l8ceg4AAT0vmEmWLluXlji9z6IlDDG88nFciX6HO\np3X4bMNnXIm/kqfnrlwZHnoIZs0yvYH33jPupsOHm/kJ994LP/0Ely7lqRgFBlsqgPirQcSpJFEA\ngncSE2Oc3lPcOHfuNM3UXK3laF8CfAMY1mgYmx7cxFf9vmLZoWVUGVOF5357jmOXjuX9+QPMRLP3\n3jOXeO1aE5Zi4kQT5rp7dxg7Fg4dynNRbIs9FUBMELEkESqrUwjeRGIijB9vWvu7dplZUR9/7PWG\naqUU7Su35+c7fmbjgxu5mnCVhl80ZPjs4Ww7lX8Lf1erZjpYixbBsWNm9cs//jAdsEaN4MUXC5+p\nyH4KIMGBIyaIWC09AMFL0BpmzzZLbv3wA/zyC0yfbmqkQkbVElX5uPfH7Ht8H3VK1aHXtF70+KYH\nS/YvIT8dUkJD4bbbYPJkOHkSxo0zUy7uugsqVYJHH4UlS8z8O2/Gdl5ATcc1Y8fbXxI+I4GljRtT\nTVafEAoy69aZADiXL5tQmT172tal0xPEJcYxfft03l/3PoG+gTzb9lkG1huYZ3MKssPu3UZfz55t\ngqr26WOURa9e2C5CgddNBKv9ST1OfvIj/lMusKtFC24o4ANiQiFl3z54/nmzksrrr5umpfRoMyRZ\nJzP/r/m8veZtTl45ydOtn+aeG+8h2N+zDcDjx2HOHONVtHGjGTcYOBBuvtmEtPA03ucGmugg2D+I\nK0liAhIKIGfPGs+eVq3MrKQ9e+Cee6TyzwIf5UPf2n1Zc98avh7wNQv2LaDqx1V5e/XbXIrznMtO\nhQpmrOC332D/ftMbmDbNDCL372+idBRkjyLbKYCriQ6Cg4JIAgIL05Q+oWDjcJgonXXqGGPyzp3w\nwgv2sxkUANpVascvQ35hyV1L2HZqG9U/qc7o5aM5F3vOo3KVLg333Qfz55tArLffDt9/DxERMGCA\nGda5fNmjIuYY29WwcYkOAkP9Kerrm6vFKAQhX9EaZswwLp1r1pj06ade79mTHzQs25DpA6ez9r61\nHLt8jJpja/J/v/4fJ6+c9LRohIUZq97cuXD4sBkjmD7d9Axuv92YjK5e9bSUWWM/BZDkIKiYv5h/\nBPuzbp1ZFf3dd407yZw5ULu2p6XyOmqWqsnEfhPZ8vAWHIkO6n1WjycXPcmJyyc8LRpglly++26Y\nN89M6u7dG774wpiP7r4bFiyw7xoHtlIAWmvikx0EhvqKAhDsy8GDZhWuO+4wBuJNm1IXyRXyjEph\nlRjbZyx/jvwTgPqf17eVIgCz+M3995sxg1274KabjA9AeLiZg7B+vek02gVbKYCE5AR8lR8BxbQo\nAMF+XLpkPHtuugnq1zcDvHffXbjCT9qA8qHl+ajXR9cpgicWPWErRQBQrpxZ4GbdOpPKlDGPS61a\nJtjrPhtEu7fVk+tIdOCvgvApKrOABRuRlGRW46pd28wa2r7dhGmWAV6P4qwIFIr6n9fnmSXPeHyw\nOD2qV4eXXzZzDKZPN4vetG1r0oQJZolnT2A7BeBHEL5FJRKoYBOWLTMBZL75xhh5J082xl3BNqQo\ngu2PbOdy3GVqfVqL0ctH87fDQ7VqJihlQk98/DFER5vo34sXmyB2Q4ea7aSk/JPHZQWglOqllNqt\nlNqrlHo2k+OaK6USlVK3ZXRMigJQRWQOgOBh9u+HW2+FBx4wTbcVKzy2FKOQPcKLhfPFLV+w6cFN\nHP77MDXH1uTt1W8TmxDradHSxd8f+vY10Un37ze9gZdeMsrgpZfgwIG8l8ElBaCU8gU+BXoB9YAh\nSql/rFRtHfcOsIhMFnBzJDrw1UEQIqGgBQ9x6RI8+yy0bAktWhh//ttvl/ANBYiqJaoyZcAUVt67\nkt9P/E6tsbWY8PsEEpMTPS1ahpQqZeIPbdxogtXFxJhHsEsXM9ksr1xKXe0BtAD2aa0Paa0TgBlA\n/3SOewz4CTiTWWaORAc+OgiCpQcg5DPJyTBpkpnIdeoUbNtmBnyDgjwtmZBL6pSuw4+DfmTm4JlM\n3zGdBp83YOaumfkadC43NGgAH31kTESPPGKsjxERZkD5zz/dey5XFUA4cNTpe7T12zWUUuEYpfCF\n9VOGV9+R6MAnKQgdJIPAQj6ybp1pbk2YYHz5p0wRO78X0SK8BcvuXsaYXmN4bcVrtP6qNSsPr/S0\nWFkSGAiDBpkewe+/m/kGPXpAu3ZGKbijV+CqAsiOKh0DPGdFe1NkYQLySQ4iKVAGgYV84Phx45c3\naJCJ37N2rRmhE7wOpRS9avTijxF/MKrFKO6adRe3fX8be8/t9bRo2aJyZbNM9OHD8PTTxiwUEeF6\nvq4qgGOAsxgRmF6AM82AGUqpg8BA4HOlVL+0Gb366qtM+GAClyKPcW7POjEBCXlHXJwJzdyokZmh\ns2uXWYNX7Pxej4/yYVijYex+dDctwlvQ+qvWPLnoSc5fPe9p0bLF6tWRbNnyKq1avcq//vWqy/m5\nFA5aKeUH7AG6AseBDcAQrfWuDI6fDPyitZ6Z5nettWbunrk8MmEiFbu+xdPNyjBI4qkI7mbBAnji\nCWPr//BDqFHD0xIJHuR0zGlGLx/Nz7t+5oX2LzCy+UgCfAtOCHqPhoPWWicCo4DFwE7ge631LqXU\nCKXUiJzm50h0QGIQCX4yCCy4mf37oV8/U/l//LGJ4iWVf6GnTJEyfHHLFywfvpxF+xbReFxjft3/\nq6fFyjdcHmnVWi8EFqb5bXwGx96bWV6ORAfJCUHE+cogsOAmYmPh7bfh88+N8fTHH83omiA4Ub9M\nfRb+ayHz985n5PyRNCjTgA97fki1Et69bKftZgLr+CDifGQQWHARrWHmTKhXD/buhS1bzLRLqfyF\nDFBKcUutW/hz5J+0DG9J8wnNeWnZS8TEx3hatDzDdgogKS6Iq0pMQIIL/PWXicn78ssmdMN335lA\n7YKQDQL9Anm+/fNsfXgrBy8epO5ndZm1a5bt5w/kBlsqgFhkJrCQC2Ji4MUXTYz+Hj1Mq79zZ09L\nJRRQKharyLe3fcvUW6fywrIX6PtdXw5eOOhpsdyK7RRAoiOIq0gPQMgBWsOsWcbcc/CgmcX7n/+Y\nYCuC4CKdqnRi68NbaRvRluYTmvPWqreIT4r3tFhuwXYKICE+mCQt6wEL2eTAAbjlFtPynzLFxNqV\nWbyCmwnwDeD59s+z8cGNrD26lsbjGrPq8CpPi+UytqplHYkOEpJDZD1gIWvi4sxSSy1aQIcOYu4R\n8oWqJaryy5BfeLPLm9z5852MnD+SS3GXPC1WrrGVAria4CBJhxDqJ+YfIRN++w0aNjQBUn7/3UTv\nDCg4k3eEgo1Sitvq3safI/8kISmBBp83YP5f8z0tVq6wlQKIiXPgFxQk9n8hfU6ehCFD4MEH4YMP\nYPZsEyRFEDxA8aDiTOg3gSkDpvD4oscZ+vNQzsRkGvDYdthOAfgHiwIQ0pCUZCZyNWwIVaqYmLh9\n+3paKkEAoEvVLmx/ZDvhoeE0/KIhP+/82dMiZRtbTbeNiXPgFxwok8CEVLZsgREjjEfP8uUmWLog\n2IwQ/xDe6/EeA+sN5O5ZdzNr9yzG9h5LieASnhYtU2zVA4hNcOAfHChhIAS4cgWeegp69oSHHoKV\nK6XyF2xPq4qt2PLwFkoGl6TRuEYs3rfY0yJliq0UwNV4B34h/mICKuzMnw/168OZM7B9O9x/P4hb\nsFBACPEP4ZPenzCl/xQemvcQD897mCvxVzwtVrrY6q1yJDrwDRYFUGg5cQLuuMMszvLVVzB1KkhI\ncKGA0rVaV7Y9vA1HooOm45vy+/HfPS3SP7ChAvATBVDYSE6GcePMAi01a5pWf7dunpZKEFwmLCiM\nKQOm8Hrn1+n9bW8+XPchyTrZ02Jdw1bGdqMAfGUQuDCxc6ex8ScnyyCv4LUMbjCYFuEtGDpzKEsO\nLGFK/ymULVrW02LZqwcQl+TAJ8hHBoELA3Fx8N//QseOMHQorF4tlb/g1VQtUZWV96ykWflmNBnf\nxBYDxLZSAPHJDgj0EROQt7NuHTRtambx/vEHjBwpg7xCocDf1583urzB9IHTeeCXB3hl+SskJSd5\nTB5bvXUJ2gFBShSAt3L5Mjz2GAwcCK++CnPmQESEp6UShHynU5VObHpwE6uOrKLP9D6cjT3rETls\npwCSA7QoAG9k0SJj4omJgR07YNAgkIB/QiGmbNGyLLlrCU3KNeGmL29i47GN+S6DbRSA1poE7SAp\nABkE9ibOnYPhw+GRR4xr56RJULKkp6USBFvg5+PH293eZkyvMdw8/WbGbxqfryuP2UYBJCQn4IMf\nif6yILxXoDX89JOJ31OihLh2CkImDKgzgNX3rebTjZ/ywNwH8m3BGdsoAEeiA18dRIKfrAZW4Dl5\n0tj5X37ZKIExY6BoUU9LJQi2plapWkTdH8UFxwW6Te2WL+MCtlEAVxOu4quDiPOV9YALLFrDtGnQ\nuDHUrQubN5v1eQVByBZFAorw0x0/0a5SO1pObMnOMzvz9Hy2sbU4Eh34JAXj8JEeQIHk+HETtfPw\nYViwAJo187REglAg8VE+vNX1LeqUrkOnKZ345tZv6FmjZ96cK09yzQWORAfoIiSjZT3ggoTWZi3e\nG280vv2bNknlLwhu4O7GdzNz8EzumXMPY9ePzZPBYVv1ABRhhOAn6wEXFI4dM2Ecjh+HX381SkAQ\nBLfRrlI71t63llu+u4XDfx/m3e7v4qPc10C2TVPbkeggmWIUUWL+sT1am0idTZpAy5awYYNU/oKQ\nR1QtUZVV965i7dG13DfnPhKSEtyWt60UABSjiI8oAFtz4gT07w/vvw+LF8Mrr5jVugRByDNKBpdk\nyV1LOB1zmtt+uI3YhFi35GsrBZBEqAwA2xWtYfp009Jv3NjY+ps08bRUglBoKBJQhDl3ziEsMIye\n03py0XHR5TxtNQagKUKonygA23HmjJnJu2uXWa3rpps8LZEgFEr8ff2ZeutU/rP4P3SY3MHl/GzV\nA0hWRQjzt41OEgDmzjUt/ipVTPROqfwFwaP4KB8+6vkRg+sPdj0vN8jjFswgcBHCAqQHYAsuXYL7\n7oMnnoAZM4zNPyjI01IJggAopXixw4su52MbBRAT70D7BosCsAPLl5vlGf39YetW6OB6V1MQBPth\nG3vL5asOfPyDKSaDwJ7D4YAXXzQt/okToXdvT0skCEIeYpsewBWHA5+AQAkF7Sm2bDH2/cOHYds2\nqfwFoRBgHwVw1YFPQJCEgs5vkpLgnXege3d49ln48UcoVcrTUgmCkA+4rACUUr2UUruVUnuVUs+m\ns/9fSqmtSqltSqk1SqlG6eVzJc6BCgyQeQD5yaFD0LmzWa1r0ya46y5ZpUsQChEuKQCllC/wKdAL\nqAcMUUrVTXPYAaCD1roR8DrwZXp5xcQ58An0FwWQH6SEbW7RAvr1g6VLoXJlT0slCEI+46q9pQWw\nT2t9CEApNQPoD+xKOUBrvc7p+PVAxfQyiolzQJC/jAHkNRcvmkldW7dKADdBKOS4agIKB446fY+2\nfsuI+4EF6e24Gu9ABfhJDyAvWbHCTOoqXdpM6pLKXxAKNa72ALIdoFop1Rm4D2ib3v7YBAc6wFcG\ngfOChAQTtO3rr417Z58+npZIEAQb4GptewyIcPoegekFXIc18DsB6KW1vpBeRgcWbCa+9DdM2hTJ\nrd2706lTJxdFEwDYtw+GDoUyZYyrZ5kynpZIEIRcEhkZSWRkpNvyU66sMqOU8gP2AF2B48AGYIjW\nepfTMZWAZcAwrXVUBvno+v/rxV9NnuFY57bcEBCQa5kEC63hm2/gqadM63/UKPHwEQQvQymF1jrX\nL7ZLPQCtdaJSahSwGPAFvtJa71JKjbD2jwdeAUoAX1grfSVorVukzSsu0UGSHzII7A7+/htGjjQt\n/qVLTVgHQRCENLhscNdaLwQWpvltvNP2A8ADWeXj0AlopQiS9YBdIyrKmHx69oSNGyEkxNMSCYJg\nU2wz4hqnNP5JyHrAuSU5Gd57Dz78EMaNg1tv9bREgiDYHNsogHgfCEyW1n+uOHXKzOK9etW0+itV\n8rREgiAUAGxT4yb4KIK02P9zzJIlqYuzL18ulb8gCNnGNj2ARF8fghEFkG1SfPu/+caEdejSxdMS\nCYJQwLCNAkjy86GIso049uboUbjzTihWDDZvhhtu8LREgiAUQGxjAkr28yXUx9/TYtifefNM3P5+\n/cwC7VL5C4KQS2zT5NZ+/hTzEwWQIQkJ8MIL8P33MHMmtE03ooYgCEK2sY0CwCeUMIkDlD5HjsDg\nwWahlj/+MMHcBEEQXMQ2JiDlG0oxfxkE/gcLFkDz5savf+5cqfwFQXAb9mlyq6IUDxAFcI3EROPl\nM3Uq/PQTtG/vaYkEQfAybKMAtE9RSgTZRhzPcvIkDBkCvr7G5CMRPAVByANsYwLCpyglgqQHQGQk\nNGsGHTrA4sVS+QuCkGfYp8ntE0Kp4EKsALSGd9+Fjz4yZp8ePTwtkSAIXo59FIBfSOEdA/j7b7jn\nHjhxwsTyiYjI8i+CIAiuYh8TkF9Q4VwPeNs2M7GrQgWzZq9U/oIg5BO2UQDKL6jwrQc8bRp07Qqj\nR8Nnn0FgoKclEgShEGGfGtc/sPD0AOLj4ckn4ddfZcUuQRA8hn0UgF9A4VAAJ07AoEFmVu+mTRAW\n5mmJBEEopNjGBKT9A7x/PeC1a82s3p49YdYsqfwFQfAo9ukBePN6wFrDF1/Aq6/ClCnQp4+nJRIE\nQbCPAvBJTPTO9YAdDhg50rh3rl0LNWp4WiJBEATARiYgn8QkT4vgfo4dMzN6Y2Jg3Tqp/AVBsBW2\nUQC+icmeFsG9rF0LLVrAwIEwYwYULeppiQRBEK7DNiYgvyTtaRHcx4QJ8NJLxt7fu7enpREEQUgX\n2ygAf29QAPHx8MQTJqDbqlVQq5anJRIEQcgQ2yiAgIJe/585Y8w9xYtDVJRZsF0QBMHG2GYMIEgX\nYA+gbduMvb9DB5g9Wyp/QRAKBLbpAQRp2+iinDF7Njz0EHzyCdx5p6elEQRByDa2UQAhqoApAK3h\nzTdh/Hizbu9NN3laIkEQhBxhGwVQRBWgMBCxsXD//XDgAGzYAOXLe1oiQRCEHGObZneor7+nRcge\nJ05Ax45mvd4VK6TyFwShwGIbBRDmb5vOSMZs3gwtW8KAAfDNNxAU5GmJBEEQco1tat0w/wBPi5A5\nc+bAAw+YoG633+5paQRBEFzGNgqglF1Xw9Ia3n8fPv7YDPY2b+5piQRBENyCbRRA6SAbKoD4eHjk\nEfjjDxPMTdbrFQTBi7CNAigTYjN7+oULZmZv0aImrIMEcxMEwctweRBYKdVLKbVbKbVXKfVsBsd8\nYu3fqpRqkt4x5YsGuyqK+zhwANq0gcaNzcpdUvkLguCFuKQAlFK+wKdAL6AeMEQpVTfNMX2AGlrr\nmsBDwBfp5VU+NMQVUdxHVBS0bQuPPgoffWTcPQVBELwQV3sALYB9WutDWusEYAbQP80x/YCvAbTW\n64HiSqmyaTOqWMwGPYAff4S+fWHiRBg1ytPSCIIg5CmujgGEA0edvkcDLbNxTEXglPNBoYEebGlr\nDe+9B2PHwpIlcOONnpNFEAQhn3BVAWQ3iHPaUJ//+N9/X3gBLFfQTp060alTJ9ckyy5JSfDYY7B6\ntfH0qVgxf84rCIKQQyIjI4mMjHRbfkrr3AfiV0q1Al7VWveyvj8PJGut33E6ZhwQqbWeYX3fDXTU\nWp9yOkbrpUuhS5dcy5IrYmNhyBCzZu/PP0NYWP6eXxAEwQWUUmid+1j6ro4BbAJqKqWqKKUCgMHA\n3DTHzAXuhmsK46Jz5X+NqCgXRckhp09D585mAZcFC6TyFwSh0OGSAtBaJwKjgMXATuB7rfUupdQI\npdQI65gFwAGl1D5gPDAy3czWrXNFlJyxd69x8+zZ06zbG2DzMBSCIAh5gEsmILcJoZTWpUubVrnK\n45XB1q83wdxef93E9hEEQSigeNoE5D4CA80ErLxk/ny45Rbj5imVvyAIhRz7KIDWrfPWDDRpklnE\nZd48uPnmvDuPIAhCAcE+CqBVq7wZCE5ZuvH1180CLi3TTlMQBEEonNgmGBytWsF337k3z6Qk+Pe/\njY//mjVQoYJ78xcEQSjA2GcQODYWSpeGM2cgxA1xgeLiYNgwOHfOBHQTN09BELwM7xkEDg6G+vXh\n999dz+vyZejTx5h/Fi6Uyl8QBCEd7KMAwAwEuzoOcOaMmVFcowZ8//218BKCIAjC9dhLAbRq5Zon\n0JEj0L69meA1bpyEchYEQcgEeyqA3IxL7NoF7drBiBHwxht5P6FMEAShgGMvBVCliqn8jx7N8tDr\n2LDBxPV54w148sk8EU0QBMHbsJcCUCrnZqDISDOxa8IEuPvuPBNNEATB27CXAoCcTQibNw/uuAN+\n+IqhNHkAAAa1SURBVMGs5CUIgiBkG/spgOx6As2YYUI7/PKLMf8IgiAIOcI+E8FS5IiJgTJl4Pz5\njF04v/wS/vtfWLQIGjbMP0EFQRBshPdMBEuhSBGoVQs2b05//wcfwP/+Z+L6SOUvCIKQa+ynACB9\nM5DW8NprpvW/cqWZ6CUIgiDkGnsqgLSeQFrDCy/Ajz+ayj8iwnOyCYIgeAn2VQApPQCt4YknYPFi\nWL4cypb1rGyCIAhegj0VQM2acOUKHDsGjzxiJnotW2aihQqCIAhuwX5eQCncfLOZEVyihPH3Dw31\njHCCIAg2xfu8gFLo0cPY+hculMpfEAQhD7BvD0AQBEHIFO/tAQiCIAh5iigAQRCEQoooAEEQhEKK\nKABBEIRCiigAQRCEQoooAEEQhEKKKABBEIRCiigAQRCEQoooAEEQhEKKKABBEIRCiigAQRCEQooo\nAEEQhEKKKABBEIRCSq4VgFKqpFJqiVLqL6XUr0qp4ukcE6GUWq6U+lMptUMp9bhr4gqCIAjuwpUe\nwHPAEq11LWCp9T0tCcCTWuv6QCvgUaVUXRfOWSCJjIz0tAh5ipSvYOPN5fPmsrkDVxRAP+Bra/tr\nYEDaA7TWJ7XWW6ztK8AuoIIL5yyQePtDKOUr2Hhz+by5bO7AFQVQVmt9yto+BWS6WrtSqgrQBFjv\nwjkFQRAEN+GX2U6l1BKgXDq7XnT+orXWSqkMl/RSShUFfgL+bfUEBEEQBA+T6yUhlVK7gU5a65NK\nqfLAcq11nXSO8wfmAQu11mMyyEvWgxQEQcgFriwJmWkPIAvmAsOBd6zP2WkPUEop4CtgZ0aVP7hW\nAEEQBCF3uNIDKAn8AFQCDgF3aK0vKqUqABO01jcrpdoBK4FtQMqJntdaL3JZckEQBMElcq0ABEEQ\nhIJNvs4EVkr1UkrtVkrtVUo9m8lxzZVSiUqp2/JTPlfJqnxKqU5Kqb+VUput9JIn5Mwt2bl/Vhk3\nWxP/IvNZRJfIxv172unebbee0X9MgLQj2ShbaaXUIqXUFuve3eMBMXNNNspXQik1Sym1VSm1XilV\n3xNy5gal1CSl1Cml1PZMjvnEKvtWpVSTbGeutc6XBPgC+4AqgD+wBaibwXHLMAPHA/NLvvwoH9AJ\nmOtpWfOwfMWBP4GK1vfSnpbbneVLc/wtwG+eltuN9+5V4H8p9w04B/h5WnY3lu894GVru3ZBuXeW\nvO0xLvTbM9jfB1hgbbcEorKbd372AFoA+7TWh7TWCcAMoH86xz2GcRk9k4+yuYPslq+gDnhnp3xD\ngZ+11tEAWuuz+SyjK2T3/qUwFPguXyRzneyU7QRQzNouBpzTWifmo4yukJ3y1QWWA2it9wBVlFI3\n5K+YuUNrvQq4kMkh1yblaq3XA8WVUpnOy0ohPxVAOHDU6Xu09ds1lFLhmBv3hfVTQRqgyLJ8mPK0\nsbppC5RS9fJNOtfJTvlqAiWt+E+blFJ35Zt0rpOd8gGglAoBegI/54Nc7iA7ZZsA1FdKHQe2Av/O\nJ9ncQXbKtxW4DUAp1QKoDFTMF+nynvTKn62yueIGmlOyU5mPAZ7TWmvLhbQgtZazU74/gAitdaxS\nqjfGdbZW3orlNrJTPn+gKdAVCAHWKaWitNZ781Qy95CTxkZfYLXW+mJeCeNmslO2F4AtWutOSqnq\nwBKlVGOt9eU8ls0dZKd8bwMfK6U2A9uBzUBSnkqVv6StK7P1POenAjgGRDh9j8BoKmeaATNM3U9p\noLdSKkFrPTd/RHSJLMvn/DJprRcqpT5XSpXUWp/PJxldITv37yhwVmt9FbiqlFoJNAYKggLITvlS\nuJOCY/6B7JWtDfAmgNZ6v1LqIMZWvilfJHSN7L5796V8t8p3IF+ky3vSlr+i9VvW5ONAhh+wHzNQ\nE0DWg2yTgds8PQDjzvJh4iWluN62AA55Wm43l68O8BtmUC4E09Kq52nZ3VU+67gwzABpsKdldvO9\n+xAYbW2XxVSgJT0tuxvLFwYEWNsPAlM8LXcOy1iF7A0CtyIHg8D51gPQWicqpUYBizEVxFda611K\nqRHW/vH5JUtekM3y3Q48opRKBGIxLckCQXbKp7XerZRahJn4l4yZELjTc1Jnnxw8nwOAxdr0cgoE\n2SzbW8BkpdRWzNjgM7pg9EyzW756wBQr7MwO4H6PCZxDlFLfAR2B0kqpo8BojLk15b1boJTqo5Ta\nB8QA92Y7b0trCIIgCIUMWRJSEAShkCIKQBAEoZAiCkAQBKGQIgpAEAShkCIKQBAEoZAiCkAQBKGQ\nIgpAEAShkCIKQBAEoZDy/wBwBdUrzqYeAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5a893d0>"
       ]
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}