1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter9 - Optoelectronics modulators"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.1 : Page 227"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The thickness of the a quarter wave plate,x = 0.0164 mm\n"
]
}
],
"source": [
"#The thickness\n",
"#given data :\n",
"lamda=589.3*10**-9## in m\n",
"ne=1.553#J\n",
"no=1.544#\n",
"x=(lamda/(4*(ne-no)))*10**3#\n",
"print \"The thickness of the a quarter wave plate,x = %0.4f mm\"%x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2 : Page 228"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The thickness of the a quarter wave plate,x = 0.0017 mm\n"
]
}
],
"source": [
"#The thickness\n",
"#given data :\n",
"lamda=589.3*10**-9## in m\n",
"ne=1.486#\n",
"no=1.658#\n",
"x=(lamda/(2*(no-ne)))*10**3#\n",
"print \"The thickness of the a quarter wave plate,x = %0.4f mm\"%x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.3: Page 234"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"change in refrative index = 1.032\n",
"net phase shift = 2.065 \n",
"Vpi = 7.61 kV\n"
]
}
],
"source": [
"from __future__ import division\n",
"from math import pi\n",
"#change in refractive index ,net phase shiftand Vpi\n",
"v=5##kV\n",
"l=1##cm\n",
"ez=(v*10**3)/(l*10**-2)##in V/m\n",
"no=1.51##\n",
"r63=10.5*10**-12##m/V\n",
"dn=((1/2)*no**3*r63*ez)##\n",
"h=550##nm\n",
"dfi=((2*pi*dn*l*10**-2)/(h*10**-9))##\n",
"fi=2*dfi##\n",
"vpi=((h*10**-9)/(2*no**3*r63))*10**-3##kV\n",
"print \"change in refrative index = %0.3f\"%dfi\n",
"print \"net phase shift = %0.3f \"%fi\n",
"print \"Vpi = %0.2f kV\"%vpi\n",
"#refractive index and phase shift is in the form of pi in the textbook"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.4: Page 237"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"part (a)\n",
"phase differnce = 1.371e+04\n",
"part (b)\n",
"additional phase differnce = 1.246\n",
"part (c)\n",
"Vpi = 504.25 V\n"
]
}
],
"source": [
"from __future__ import division\n",
"#phase difference,additional phase difference and Vpi\n",
"print \"part (a)\"\n",
"h=550##nm\n",
"l=3##cm\n",
"no=1.51##\n",
"ne=1.47##\n",
"dfi=((2*pi*l*10**-2*(no-ne))/(h*10**-9))##\n",
"print \"phase differnce = %0.3e\"%dfi\n",
"#phase difference is in the form of pi in the textbook\n",
"print \"part (b)\"\n",
"no=1.51##\n",
"r63=26.4*10**-12##m/V\n",
"V=200##\n",
"d=0.25##cm\n",
"dfi=((pi*r63*no**3*(V)*(l*10**-2))/(h*10**-9*d*10**-2))##\n",
"print \"additional phase differnce = %0.3f\"%dfi\n",
"#additional phase difference is in the form of pi in the textbook\n",
"print \"part (c)\"\n",
"r63=26.4*10**-12##m/V\n",
"V=200##\n",
"d=0.25##cm\n",
"dfi=((pi*r63*no**3*(V)*(l*10**-2))/(h*10**-9*d*10**-2))##\n",
"vpi=((h*10**-9)/(no**3*r63))*(d/l)##V\n",
"print \"Vpi = %0.2f V\"%vpi"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.5 : Page 239"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"part (a)\n",
"angle = 0.09 degree\n",
"part (b)\n",
"The relative intensity = 0.246\n"
]
}
],
"source": [
"from __future__ import division\n",
"from math import asin,degrees\n",
"#angle and relative intensity\n",
"#given data :\n",
"print \"part (a)\"\n",
"m=1#\n",
"l=633*10**-9## in m\n",
"f=5*10**6## in Hz\n",
"v=1500##in m/s\n",
"n=1.33## for water\n",
"A=v/f#\n",
"theta=asin((l/(n*A)))#\n",
"print \"angle = %0.2f degree\"%degrees(theta)\n",
"print \"part (b)\"\n",
"del_n=10**-5#\n",
"L=1*10**-2## in m\n",
"lamda=633*10**-9## in m\n",
"eta=(pi**2*del_n**2*L**2)/lamda**2#\n",
"print \"The relative intensity = %0.3f\"%eta"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|