1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
{
"metadata": {
"celltoolbar": "Raw Cell Format",
"name": "",
"signature": "sha256:f5d955431773596849dab1900f3dadd3740eea7cc2816449e90ee1d7309c3fc7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2: Fundamental of Semiconductor Theory"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.1,Page number 43"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#given\n",
"\n",
"n=1;\n",
"Ne=2*n**2;\n",
"print\"Maximum number of electron in 1st shell is \",Ne; #Result\n",
"n2=2; #shell no\n",
"Ne2=2*n2**2; #shell no\n",
"print\"Maximum number of electron in 2nd shell is \",Ne2; #Result\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum number of electron in 1st shell is 2\n",
"Maximum number of electron in 2nd shell is 8\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.2,Page number 45"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#given\n",
"\n",
"#Given for silicon for temp 0-400K\n",
"Eg0_Si=1.17; #in eV\n",
"A=4.73*10**-4; #in eV/K\n",
"B=636;\n",
"for i in range(1,9):\n",
" T=50*i; #degree/Kelvin\n",
" Eg_Si=Eg0_Si-(A*T**2)/(B+T);\n",
" print\"Band gap energy of silicon at \",T,\" K is \",round(Eg_Si,3),\"eV \"; #result\n",
"\n",
"#Given for Germanium for temp 0-400K\n",
"print\"\\n\"\n",
"Eg0_Ge=0.7437; #in eV\n",
"A_Ge=4.774*10**-4; #in eV/K\n",
"B_Ge=235;\n",
"for i in range(1,9):\n",
" T=50*i; #degree/Kelvin\n",
" Eg_Ge=Eg0_Ge-(A_Ge*T**2)/(B_Ge+T);\n",
" print\"Band gap energy of germanium at \",T,\" K is \",round(Eg_Ge,3),\"eV \"; #result\n",
"\n",
"\n",
"#Given for GaAs for temp 0-400K\n",
"print\"\\n\"\n",
"Eg0_Ga=1.519; #in eV\n",
"A_Ga=5.405*10**-4; #in eV/K\n",
"B_Ga=204;\n",
"for i in range(1,9):\n",
" T=50*i; #degree/Kelvin\n",
" Eg_Ga=Eg0_Ga-(A_Ga*T**2)/(B_Ga+T);\n",
" print\"Band gap energy of GaAs at \",T ,\"K is \",round(Eg_Ga,3),\"eV\"; #result\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Band gap energy of silicon at 50 K is 1.168 eV \n",
"Band gap energy of silicon at 100 K is 1.164 eV \n",
"Band gap energy of silicon at 150 K is 1.156 eV \n",
"Band gap energy of silicon at 200 K is 1.147 eV \n",
"Band gap energy of silicon at 250 K is 1.137 eV \n",
"Band gap energy of silicon at 300 K is 1.125 eV \n",
"Band gap energy of silicon at 350 K is 1.111 eV \n",
"Band gap energy of silicon at 400 K is 1.097 eV \n",
"\n",
"\n",
"Band gap energy of germanium at 50 K is 0.74 eV \n",
"Band gap energy of germanium at 100 K is 0.729 eV \n",
"Band gap energy of germanium at 150 K is 0.716 eV \n",
"Band gap energy of germanium at 200 K is 0.7 eV \n",
"Band gap energy of germanium at 250 K is 0.682 eV \n",
"Band gap energy of germanium at 300 K is 0.663 eV \n",
"Band gap energy of germanium at 350 K is 0.644 eV \n",
"Band gap energy of germanium at 400 K is 0.623 eV \n",
"\n",
"\n",
"Band gap energy of GaAs at 50 K is 1.514 eV\n",
"Band gap energy of GaAs at 100 K is 1.501 eV\n",
"Band gap energy of GaAs at 150 K is 1.485 eV\n",
"Band gap energy of GaAs at 200 K is 1.465 eV\n",
"Band gap energy of GaAs at 250 K is 1.445 eV\n",
"Band gap energy of GaAs at 300 K is 1.422 eV\n",
"Band gap energy of GaAs at 350 K is 1.399 eV\n",
"Band gap energy of GaAs at 400 K is 1.376 eV\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.3,Page number 52"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#given\n",
"\n",
"l=10*10**-3; #in m\n",
"w=2*10**-3; #in m\n",
"h=2*10**-3; #in m\n",
"V=12; #in V\n",
"u_n=0.14; #in m*m/V*s\n",
"u_p=0.05; #in m*m/V*s\n",
"q_n=1.6*10**-19; #in Columbs\n",
"q_p=1.6*10**-19; #in Columbs\n",
"p_i=2.4*10**19; #in columbs\n",
"n_i=2.4*10**19; #in columbs\n",
"E=V/l;\n",
"v_n=E*u_n;\n",
"v_p=E*u_p;\n",
"J_n=n_i*q_n*v_n;\n",
"J_p=p_i*q_p*v_p;\n",
"J=J_n+J_p;\n",
"print\"Electron velocity :vn is \",v_n,\"m/s\"; #result\n",
"print\"Hole velocity :vp is \",v_p/1000,\"km/s\"; #result\n",
"print\"Current density : Jn \",J,\"A/m^2\"; #result\n",
"A=88*10**-6;\n",
"I_T=J*A;\n",
"print\"Total current :I_T is\",round(I_T*1000,4),\"mA\"; #result\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Electron velocity :vn is 168.0 m/s\n",
"Hole velocity :vp is 0.06 km/s\n",
"Current density : Jn 875.52 A/m^2\n",
"Total current :I_T is 77.0458 mA\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.4,Page number 53"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#given\n",
"\n",
"n_i=2*10**17; #electron/m*m*m\n",
"p=5.7*10**20; #holes/m*m*m\n",
"u_n=0.14; #in m*m/V*s\n",
"u_p=0.05; #in m*m/V*s\n",
"q_n=1.6*10**-19; #in Columbs\n",
"q_p=1.6*10**-19; #in Columbs\n",
"n=(n_i)**2/p;\n",
"print\"Electron :n is \",\"{0:.3e}\".format(n),\"electrons \"; #result\n",
"n=7*10**13\n",
"P=(n*u_n*q_n)+(p*u_p*q_p);\n",
"print\"Conductivity :P is \",round(P,4),\"S/m \"; #result\n",
"# answer misprinted\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Electron :n is 7.018e+13 electrons \n",
"Conductivity :P is 4.56 S/m \n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.5,Page number 55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#given\n",
"\n",
"NA=10**22; #acceptors/m*m*m\n",
"ND=1.2*10**21; #donors/m*m*m\n",
"T=298; #in Kelvin\n",
"k=1.38*10**-23; #Boltzman Constant in J/K\n",
"q=1.6*10**-19; #charge of electron in C\n",
"Vt=k*T/q; #thermal voltage in V\n",
"print\" VT is \",Vt*1000,\"mV\"; #result\n",
"n_i=2.4*10**17; #carrier/m**3 for silicon \n",
"VB=Vt*log(NA*ND/n_i**2); #barrier voltage in V\n",
"print\" Barrier Voltage of Silicon VB is \",round(VB*1000,4),\"mV\"; #result\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" VT is 25.7025 mV\n",
" Barrier Voltage of Silicon VB is 492.3224 mV\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.6,Page number 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#given\n",
"\n",
"Is=0.12; #in pAmp\n",
"V=0.6; #in V\n",
"T=293; #in Kelvin\n",
"k=1.38*10**-23; #Boltzmann's Constant in J/K\n",
"q=1.6*10**-19; # charge of electron in C\n",
"Vt=k*T/q; #thermal voltage\n",
"print\"VT(20 deg Cel) is \",round(Vt,4),\"V\"; #result in book is misprint\n",
"T1=373; #in Kelvin\n",
"n=1.25;\n",
"Vt1=k*T1/q; #thermal voltage\n",
"print\"VT(100 deg Cel) is \",round(Vt1,4),\"V\";\n",
"I=Is*(math.e**(V/(n*Vt1))-1); #forward biasing current in mircoA\n",
"print\"I(100 deg Cel) is \",round(I/10**6,4),\"microampere\"; #result\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"VT(20 deg Cel) is 0.0253 V\n",
"VT(100 deg Cel) is 0.0322 V\n",
"I(100 deg Cel) is 0.3622 microampere\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.7,Page number 56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#given\n",
"\n",
"Is=100; #in nAmp \n",
"Ts=100; #in Kelvin\n",
"I_s=Is*10**-9*2**(Ts/10); #I_s will be in nm \n",
"print\" I(100 deg Cel) is \",I_s*10**6,\"microampere\"; #converted to microA from nm\n",
"# wrong calculation in the book\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" I(100 deg Cel) is 102.4 microampere\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2.8,Page number 59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#given\n",
"\n",
"Br_Si=1.79*10**-15; #Recombination coefficient for Si\n",
"Br_Ge=5.25*10**-14; #Recombination coefficient for Ge\n",
"Br_GeAs=7.21*10**-10; #Recombination coefficient for GeAs\n",
"Br_InAs=8.5*10**-11; #Recombination coefficient for InAs\n",
"P_N=2*10**20; #per cubic cm\n",
"\n",
"T_Ge=1/Br_Ge/P_N; #radiative minority carrier lifetime\n",
"print\"T_Ge is \",round(T_Ge/10**-6,4),\"micro-s\"; #result\n",
"\n",
"T_Si=1/Br_Si/P_N; #radiative minority carrier lifetime\n",
"print\"T_Si is \",round(T_Si/10**-6,4),\"micro-s\"; #result\n",
"\n",
"T_InAs=1/Br_InAs/P_N; #radiative minority carrier lifetime\n",
"print\"T_InAs is \",round(T_InAs/10**-12,4),\"ps\"; #result\n",
"\n",
"T_GeAs=1/Br_GeAs/P_N; #radiative minority carrier lifetime\n",
"print\"T_GeAs is \",round(T_GeAs/10**-12,4),\"ps\"; #result\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"T_Ge is 0.0952 micro-s\n",
"T_Si is 2.7933 micro-s\n",
"T_InAs is 58.8235 ps\n",
"T_GeAs is 6.9348 ps\n"
]
}
],
"prompt_number": 25
}
],
"metadata": {}
}
]
}
|