1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
|
{
"metadata": {
"name": "ch4"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.1 Using a while Loop to Compute a Sum of Consecutive Integers\nThis program computes the sum 1 + 2 + 3 + + n for an input integer n:\n'''\ni=1\nprint \"Enter a positive integer: \"\nn = int(raw_input())\ns=0\nwhile (i <= n):\n s += i\n i += 1\nprint \"The sum of the first %d integers is %d\" %(i,s)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "5\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "The sum of the first 6 integers is 15\n"
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.2 Using a while Loop to Compute a Sum of Reciprocals\nThis program computes the sum of reciprocals s = 1 + 1/2 + 1/3 + 1/n where n is\ninteger for which n is greater than s\n'''\n\nprint \"Enter a positive integer: \"\nbound = int(raw_input())\ns=0.0\ni=0\nwhile (s < bound):\n i += 1\n s += 1.0/i\n\nprint \"The sum of the first %d reciprocals is %f\" %(i,s)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "5\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "The sum of the first 83 reciprocals is 5.002068\n"
}
],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.3 Using a while Loop to Repeat a Computation\nThis program prints the square root of each number input by the user. It uses a while loop to allow any\nnumber of computations in a single run of the program:\n'''\nimport math\nprint \"Enter a positive number: \"\nx = float(raw_input())\nwhile (x > 0):\n print \"sqrt(%d) = %f \"%(x,math.sqrt(x))\n print \"Enter another positive number (or 0 to quit): \"\n x = float(raw_input())\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive number: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "5\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "sqrt(5) = 2.236068 \nEnter another positive number (or 0 to quit): \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "3\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "sqrt(3) = 1.732051 \nEnter another positive number (or 0 to quit): \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "0\n"
}
],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.4 Using a break Statement to Terminate a Loop\nThis program has the same effect as the one in Example 4.1 on page 60:\n'''\ni=1\nprint \"Enter a positive integer: \";\nn = int(raw_input())\ns=0\nwhile(True):\n if (i > n):\n break # terminates the loop immediately\n s += i\n i += 1\nprint \"The sum of the first %d integers is %d\" %(n,s)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "5\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "The sum of the first 5 integers is 15\n"
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.5 The Fibonacci Numbers\n'''\n\nprint \"Enter a positive integer: \"\nbound = int(raw_input())\nprint \"Fibonacci numbers < %d:\\n0, 1\" % bound ,\nf0=0\nf1=1\nwhile (True):\n f2 = f0 + f1\n if (f2 > bound):\n break\n print \", %d\" % f2,\n f0 = f1\n f1 = f2\n ",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "10\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "Fibonacci numbers < 10:\n0, 1 , 1 , 2 , 3 , 5 , 8\n"
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.6 Using the exit(0) Function\nThe exit() function provides another way to terminate a loop. When it executes, it terminates the\nprogram itself:\n'''\nimport sys\nprint \"Enter a positive integer: \"\nbound = int(raw_input())\nprint \"Fibonacci numbers < %d:\\n0, 1\" % bound ,\nf0=0\nf1=1\nwhile (True):\n f2 = f0 + f1\n if (f2 > bound):\n sys.exit(0)\n print \", %d\" % f2,\n f0 = f1\n f1 = f2\n ",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "10\n"
},
{
"ename": "SystemExit",
"evalue": "0",
"output_type": "pyerr",
"traceback": [
"An exception has occurred, use %tb to see the full traceback.\n",
"\u001b[1;31mSystemExit\u001b[0m\u001b[1;31m:\u001b[0m 0\n"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": "Fibonacci numbers < 10:\n0, 1 , 1 , 2 , 3 , 5 , 8"
},
{
"output_type": "stream",
"stream": "stderr",
"text": "To exit: use 'exit', 'quit', or Ctrl-D.\n"
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.7 Aborting Infinite Loop\nWithout some termination mechanism, the loop will run forever. To abort its execution after it starts,\npress <Ctrl>+C (i.e., hold the Ctrl key down and press the C key on your keyboard):\n'''\n\nprint \"Enter a positive integer: \"\nbound = int(raw_input())\nprint \"Fibonacci numbers < %d:\\n0, 1\" % bound ,\nf0=0\nf1=1\n# Error : infinite loop !\nwhile (True):\n f2 = f0 + f1\n # By commenting the below if statement, it goes to infinite.\n if (f2 > bound):\n break\n print \", %d\" % f2,\n f0 = f1\n f1 = f2",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "10\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "Fibonacci numbers < 10:\n0, 1 , 1 , 2 , 3 , 5 , 8\n"
}
],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.7 Aborting Infinite Loop\nWithout some termination mechanism, the loop will run forever. To abort its execution after it starts,\npress <Ctrl>+C (i.e., hold the Ctrl key down and press the C key on your keyboard):\n'''\n\nprint \"Enter a positive integer: \"\nbound = int(raw_input())\nprint \"Fibonacci numbers < %d:\\n0, 1\" % bound ,\nf0=0\nf1=1\n# Error : infinite loop !\nwhile (True):\n f2 = f0 + f1\n # By commenting the below if statement, it goes to infinite.\n if (f2 > bound):\n break\n print \", %d\" % f2,\n f0 = f1\n f1 = f2",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \nFibonacci numbers < 10:\n0, 1 , 1 , 2 , 3 , 5 , 8\n"
}
],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.8 Using a do..while Loop to Compute a Sum of Consecutive Integers\nThis program has the same effect as the one in Example 4.1 on page 60:\n'''\ni=0\nprint \"Enter a positive integer: \"\nn = int(raw_input())\ns=0\nwhile i<=n:\n s += i\n i += 1\nprint \"The sum of the first %d integers is %d\" %(n,s)\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "10\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "The sum of the first 10 integers is 55\n"
}
],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.9 The Factorial Numbers\n'''\n\nprint \"Enter a positive integer: \"\nbound = int(raw_input())\nprint \"Factorial numbers < %d:\\n1, 1\" %bound,\nf=1\ni=1\nwhile f < bound:\n i += 1\n f *= i\n print \", %d\" %f,\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "10\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "Factorial numbers < 10:\n1, 1 , 2 , 6 , 24\n"
}
],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.10 Using a for Loop to Compute a Sum of Consecutive Integers\nThis program has the same effect as the one in Example 4.1 on page 60:\n'''\n\nprint \"Enter a positive integer: \"\nn = int(raw_input())\ns=0;\nfor i in range(0,n+1):\n s += i\nprint \"The sum of the first %d integers is %d\" %(n,s)\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "10\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "The sum of the first 10 integers is 55\n"
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.11 Reusing for Loop Control Variable Names\nThis program has the same effect as the one in Example 4.1 on page 60:\n'''\nprint \"Enter a positive integer: \"\nn = int(raw_input())\ns=0\nfor i in range(1,n/2): # the scope of this i is this loop\n s += i\n\nfor i in range(n/2,n+1): # the scope of this i is this loop\n s += i\nprint \"The sum of the first %d integers is %d\" % (n,s)\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "10\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "The sum of the first 10 integers is 55\n"
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.12 The Factorial Numbers Again\nThis program has the same effect as the one in Example 4.9 on page 65:\n'''\nprint \"Enter a positive integer: \"\nbound = int(raw_input())\n\nprint \"Factorial numbers that are <= %d:\\n1, 1\" %bound,\nf=1\nfor i in range(2,bound+1):\n f *= i\n print \", %d\" % f,\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "10\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "Factorial numbers that are <= 10:\n1, 1 , 2 , 6 , 24 , 120 , 720 , 5040 , 40320 , 362880 , 3628800\n"
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.13 Using a Descending for Loop\nThis program prints the first ten positive integers in reverse order:\n'''\n\nfor i in range(10,0,-1):\n print i,\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "10 9 8 7 6 5 4 3 2 1\n"
}
],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.14 Using a for Loop with a Step Greater than One\nThis program determines whether an input number is prime:\n'''\nprime = True\nprint \"Enter a positive integer: \"\nn = int(raw_input())\nif (n < 2):\n print \"%d is not prime.\" %n\n prime = False\nelif (n < 4):\n print \"%d is prime.\" %n\n prime = False\nelif (n%2 == 0):\n print \"%d = 2* %d\" %(n,n/2)\n prime = False\nelse:\n for d in range(3,n/2+1):\n if (n%d == 0):\n print \"%d = %d * %d\" %(n,d,n/d)\n prime = False\nif prime: \n print \"%d is prime.\"%n\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "11\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "11 is prime.\n"
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.15 Using a Sentinel to Control a for Loop\nThis program finds the maximum of a sequence of input numbers:\n'''\nprint \"Enter positive integers (0 to quit): \";\nn = int(raw_input())\nm = n\nwhile n > 0:\n n = int(raw_input())\n if n > m :\n m = n\n\nprint \"max = %d\" % m",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter positive integers (0 to quit): \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "5\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "19\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "42\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "1\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "0\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "max = 42\n"
}
],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.16 Using a Loop Invariant to Prove that a for Loop is Correct\nThis program finds the minimum of a sequence of input numbers. It is similar to the program in\nExample 4.15:\n'''\n\nprint \"Enter positive integers (0 to quit): \";\nn = int(raw_input())\nm = n\nwhile n > 0: \n if n < m :\n m = n\n n = int(raw_input())\n\nprint \"min = %d\" % m\n\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter positive integers (0 to quit): \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "5\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "19\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "42\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "1\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "0\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "min = 1\n"
}
],
"prompt_number": 11
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.17\n'''\n\nm = 95\nn = 11\nwhile m%n > 0:\n print \"%d modulo %d = %d\" %(m,n,m%n)\n m -= 3\n n += 1\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "95 modulo 11 = 7\n92 modulo 12 = 8\n89 modulo 13 = 11\n86 modulo 14 = 2\n83 modulo 15 = 8\n"
}
],
"prompt_number": 12
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.18 Nesting for Loops\nThis program prints a multiplication table:\n'''\n\nfor x in range(1,13):\n for y in range(1,13):\n print \"%4d\" % (x*y),\n print \"\"\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " 1 2 3 4 5 6 7 8 9 10 11 12 \n 2 4 6 8 10 12 14 16 18 20 22 24 \n 3 6 9 12 15 18 21 24 27 30 33 36 \n 4 8 12 16 20 24 28 32 36 40 44 48 \n 5 10 15 20 25 30 35 40 45 50 55 60 \n 6 12 18 24 30 36 42 48 54 60 66 72 \n 7 14 21 28 35 42 49 56 63 70 77 84 \n 8 16 24 32 40 48 56 64 72 80 88 96 \n 9 18 27 36 45 54 63 72 81 90 99 108 \n 10 20 30 40 50 60 70 80 90 100 110 120 \n 11 22 33 44 55 66 77 88 99 110 121 132 \n 12 24 36 48 60 72 84 96 108 120 132 144 \n"
}
],
"prompt_number": 13
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.19 Testing a Loop Invariant\n'''\nimport math\n# defines pow() and log()\n\nprint \"Enter a positive integer: \"\nn = int(raw_input())\nd=0 # the discrete binary logarithm of n\np2d=1 # = 2^d\ni = n\nwhile i > 1:\n # INVARIANT: 2^d <= n/i < 2*2^d\n p2d=math.pow(2,d) # = 2^d\n print \"%2d <= %2d\" %(p2d,2*p2d)\n i /= 2\n d += 1\n\np2d=math.pow(2,d) # = 2^d\nprint \"%2d <= %2d < %2d\" %(p2d,n,2*p2d)\nprint \" The discrete binary logarithm of is %d\" % d \nlgn = math.log(n)/math.log(2) # base 2 logarithm\nprint \"The continuous binary logarithm of is %f\" % lgn",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "17\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": " 1 <= 2\n 2 <= 4\n 4 <= 8\n 8 <= 16\n16 <= 17 < 32\n The discrete binary logarithm of is 4\nThe continuous binary logarithm of is 4.087463\n"
}
],
"prompt_number": 14
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.20 Using a break Statement to Terminate a Loop\nThis program has the same effect as the one in Example 4.1 on page 60. It uses a break statement to\ncontrol the loop:\n'''\ni=1\nprint \"Enter a positive integer: \"\nn = int(raw_input())\ns=0\nwhile (True):\n if (i > n):\n break\n s += i\n i += 1\n\nprint \"The sum of the first %d integers is %d\" %(i,s)\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter a positive integer: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "10\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "The sum of the first 11 integers is 55\n"
}
],
"prompt_number": 15
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.21 Controlling Input with a Sentinel\nThis program reads a sequence of positive integers, terminated by 0, and prints their average:\n'''\ncount=0\ns=0\nprint \"Enter positive integers (0 to quit):\" \nwhile True: # \"forever\"\n print \"\\t %d :\" %(count + 1),\n n = int(raw_input())\n if (n <= 0):\n break\n count += 1\n s += n\n\nprint \"The average of those %d positive numbers is \" %count,\nprint float(s)/count\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter positive integers (0 to quit):\n\t 1 :"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "12\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": " \t 2 :"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "32\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": " \t 3 :"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "11\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": " \t 4 :"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "0\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": " The average of those 3 positive numbers is 18.3333333333\n"
}
],
"prompt_number": 16
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.22 Using a break Statement with Nested Loops\n'''\n\nfor x in range(1,13):\n for y in range(1,13):\n if y>x:\n break\n else:\n print '%4d' %(x*y),\n print ''\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " 1 \n 2 4 \n 3 6 9 \n 4 8 12 16 \n 5 10 15 20 25 \n 6 12 18 24 30 36 \n 7 14 21 28 35 42 49 \n 8 16 24 32 40 48 56 64 \n 9 18 27 36 45 54 63 72 81 \n 10 20 30 40 50 60 70 80 90 100 \n 11 22 33 44 55 66 77 88 99 110 121 \n 12 24 36 48 60 72 84 96 108 120 132 144 \n"
}
],
"prompt_number": 17
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.23 Using continue and break Statements\nThis little program illustrates the continue and break statements:\n'''\nwhile True:\n n = int(raw_input('Enter int : '))\n if (n%2 == 0):\n continue\n if (n%3 == 0):\n break\n print \"\\tBottom of loop.\\n\"\nprint \"\\tOutside of loop.\\n\"\n",
"language": "python",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "Enter int : 5\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "\tBottom of loop.\n\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "Enter int : 4\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "Enter int : 6\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "Enter int : 9\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "\tOutside of loop.\n\n"
}
],
"prompt_number": 18
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.24 Using a goto Statement to Break Out of a Nest of Loops\nNote : Python has no goto facility.\n'''\nN=5\ndone=False\nfor i in range(N):\n for j in range(N):\n if done:\n break\n for k in range(N):\n if done:\n break\n if (i+j+k>N):\n done = True\n else:\n print i+j+k,\n print \" \",\n print \"* \"\n print \".\" \n done = False\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "0 1 2 3 4 * \n1 2 3 4 5 * \n2 3 4 5 * \n.\n1 2 3 4 5 * \n2 3 4 5 * \n.\n2 3 4 5 * \n.\n3 4 5 * \n.\n4 5 * \n.\n"
}
],
"prompt_number": 19
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.25 Using a Flag to Break Out of a Nest of Loops\nThis program has the same output as that in Example 4.24:\n'''\nN=5\ndone=False\nfor i in range(N):\n for j in range(N):\n if done:\n break\n for k in range(N):\n if done:\n break\n if (i+j+k>N):\n done = True\n else:\n print i+j+k,\n print \" \",\n print \"* \"\n print \".\" \n done = False\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "0 1 2 3 4 * \n1 2 3 4 5 * \n2 3 4 5 * \n.\n1 2 3 4 5 * \n2 3 4 5 * \n.\n2 3 4 5 * \n.\n3 4 5 * \n.\n4 5 * \n.\n"
}
],
"prompt_number": 20
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.26 Generating Pseudo-Random Numbers\nThis program uses the rand() function to generate pseudo-random numbers:\n'''\nimport random\n\n# prints pseudo-random numbers:\n\nfor i in range(0,8):\n print random.random()\n\n ",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "0.702115758628\n0.969460447904\n0.409934401112\n0.700339443791\n0.093528851602\n0.132172955687\n0.0162887279366\n0.943010713478\n"
}
],
"prompt_number": 21
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.27 Setting the Seed Interactively\nThis program is the same as the one in Example 4.26 except that it allows the pseudo-random number\ngenerator's seed to be set interactively:\n'''\nimport random\n# prints pseudo-random numbers:\nprint \"Enter seed: \"\nseed = int(raw_input())\nrandom.seed(seed);\nfor i in range(0,8):\n print random.random()\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter seed: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "5\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "0.62290169489\n0.741786989261\n0.795193565566\n0.942450283777\n0.73989857474\n0.922324996665\n0.0290052282836\n0.465622654378\n"
}
],
"prompt_number": 22
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.28 Setting the Seed from the System Clock\nThis program is the same as the one in Example 4.27 except that it sets the pseudo-random number\ngenerator's seed from the system clock.\n'''\nimport random\nfor i in range(0,8):\n print random.random()\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "0.943356716998\n0.648974553137\n0.900900491751\n0.113205964653\n0.469069047782\n0.24657283262\n0.543760859236\n0.573941187928\n"
}
],
"prompt_number": 23
},
{
"cell_type": "code",
"collapsed": false,
"input": "'''\nEXAMPLE 4.29 Generating Pseudo-Random Numbers in Given Range\nThis program is the same as the one in Example 4.28 except that the pseudo-random numbers that it\ngenerates are restricted to given range:\n'''\nimport random\nprint \"Enter minimum and maximum: \"\nm = int(raw_input())\nn = int(raw_input())\n# lowest and highest numbers\nr = n - m + 1\n# number of numbers in range\nfor i in range(0,20):\n j = int(random.random()*100 % r + m)\n print j,\n print \" \",\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "Enter minimum and maximum: \n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "5\n"
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": "15\n"
},
{
"output_type": "stream",
"stream": "stdout",
"text": "6 15 10 8 15 9 7 7 11 6 5 15 14 15 15 15 11 13 14 6 \n"
}
],
"prompt_number": 24
},
{
"cell_type": "code",
"collapsed": false,
"input": "",
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|