summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_V_Rajendran/Chapter21.ipynb
blob: c91130dcd59da701b3e1f3abec8bdc9160880cbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
{
 "metadata": {
  "name": "",
  "signature": "sha256:dd76b185872085137646ef650e27e3207f4aa1a0d590f7c3a0d53ab66156e953"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "21: Dielectric Materials"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 21.1, Page number 27"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "a=0.629*10**-9;   #lattice parameter(m)\n",
      "alphaeK=1.26*10**-40;   #electronic polarizability for K+(F/m**2)\n",
      "alphaeCl=3.408*10**-40;   #electronic polarizability for Cl-(F/m**2)\n",
      "n=4;   #number of atoms\n",
      "epsilon0=8.854*10**-12;\n",
      "\n",
      "#Calculation\n",
      "alphae=alphaeK+alphaeCl;   #electronic polarizability for KCl(F/m**2)\n",
      "N=n/(a**3);   #number of dipoles(atoms/m**3)\n",
      "epsilonr=(N*alphae/epsilon0)+1;   #dielectric constant of KCl\n",
      "\n",
      "#Result\n",
      "print \"dielectric constant of KCl is\",round(epsilonr,4)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "dielectric constant of KCl is 1.8474\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 21.2, Page number 27"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "R=0.12*10**-9;   #atomic radius of Se(m)\n",
      "epsilon0=8.854*10**-12;\n",
      "\n",
      "#Calculation\n",
      "alphae=4*math.pi*epsilon0*(R**3);   #electronic polarizability of isolated Se(F/m**2)\n",
      "\n",
      "#Result\n",
      "print \"electronic polarizability of isolated Se is\",round(alphae*10**40,4),\"*10**-40 F/m**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "electronic polarizability of isolated Se is 1.9226 *10**-40 F/m**2\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 21.3, Page number 28"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "alphae=0.35*10**-40;   #electronic polarizability(F/m**2)\n",
      "N=2.7*10**25;   #number of atoms(atoms/m**3)\n",
      "epsilon0=8.854*10**-12;\n",
      "\n",
      "#Calculation\n",
      "a=N*alphae/(3*epsilon0);\n",
      "epsilonr=(1+(2*a))/(1-a);   #dielectric constant of Ne\n",
      "\n",
      "#Result\n",
      "print \"dielectric constant of Ne is\",round(epsilonr,9)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "dielectric constant of Ne is 1.000106735\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 21.4, Page number 28"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "R=0.384*10**-9;   #radius of Ar(m)\n",
      "N=2.7*10**25;   #number of atoms(atoms/m**3)\n",
      "epsilon0=8.854*10**-12;\n",
      "\n",
      "#Calculation\n",
      "alphae=4*math.pi*epsilon0*(R**3);   #electronic polarizability of Ar(F/m**2)\n",
      "a=N*alphae/(3*epsilon0);\n",
      "epsilonr=(1+(2*a))/(1-a);   #dielectric constant of Ar\n",
      "\n",
      "#Result\n",
      "print \"dielectric constant of Ar is\",epsilonr\n",
      "print \"answer given in the book is wrong\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "dielectric constant of Ar is 1.01933559019\n",
        "answer given in the book is wrong\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 21.5, Page number 29"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "C=2*10**-6;    #capacitance(F)\n",
      "epsilonr=80;   #permitivity of dielectric\n",
      "V=1*10**3;    #applied voltage(V)\n",
      "\n",
      "#Calculation\n",
      "E1=(1/2)*C*V**2;   #energy stored in capacitor(J)\n",
      "C0=C/epsilonr;   #capacitance when dielectric is removed(F)\n",
      "E2=(1/2)*C0*V**2;   #energy stored in capacitor with vacuum as dielectric(J)\n",
      "E=1-E2;   #energy stored in capacitor in polarizing the dielectric(J)\n",
      "\n",
      "#Result\n",
      "print \"energy stored in capacitor is\",E1,\"J\"\n",
      "print \"energy stored in capacitor in polarizing the dielectric is\",E,\"J\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "energy stored in capacitor is 1.0 J\n",
        "energy stored in capacitor in polarizing the dielectric is 0.9875 J\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 21.6, Page number 30"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "N=5*10**28;    #number of atoms(per m**3)\n",
      "alpha=2*10**-40;   #polarizability(Fm**2)\n",
      "epsilon0=8.854*10**-12;\n",
      "\n",
      "#Calculation\n",
      "P=N*alpha;\n",
      "a=1-(P/(3*epsilon0));\n",
      "EibyE=1/a;     #ratio of internal field to applied field\n",
      "\n",
      "#Result\n",
      "print \"ratio of internal field to applied field is\",round(EibyE,4)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "ratio of internal field to applied field is 1.6038\n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}