1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
{
"metadata": {
"name": "",
"signature": "sha256:608ce4833ab64488375d1cbc1e6cf701004b5459a3cd8764d294e881ba488e96"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"12: Fibre Optics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 12.1, Page number 26"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"NA=0.16; #numerical aperture of fibre\n",
"n1=1.45; #refractive index of core\n",
"d=90*10**-6; #diameter of core(m)\n",
"n0=1; #refractive index of air\n",
"lamda=0.9*10**-6; #wavelength(m)\n",
"\n",
"#Calculation\n",
"n2=math.sqrt((n1**2)-(NA**2)); #refractive index of cladding\n",
"phi=math.asin(NA/n0); #acceptance angle(radian)\n",
"phi=phi*180/math.pi; #acceptance angle(degrees)\n",
"phid=int(phi); #acceptance angle(degrees)\n",
"t=60*(phi-phid); \n",
"phim=int(t); #acceptance angle(minutes)\n",
"phis=60*(t-phim); #acceptance angle(seconds)\n",
"N=4.9*(d*NA/lamda)**2; #number of nodes propagating through fibre\n",
"Nstep=N/2; #number of nodes propagating through graded index fibre\n",
"\n",
"#Result\n",
"print \"refractive index of cladding is\",round(n2,3)\n",
"print \"acceptance angle is\",phid,\"degrees\",phim,\"minutes\",round(phis,2),\"seconds\"\n",
"print \"number of nodes propagating through fibre is\",N\n",
"print \"number of nodes propagating through graded index fibre is\",int(Nstep)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"refractive index of cladding is 1.441\n",
"acceptance angle is 9 degrees 12 minutes 24.83 seconds\n",
"number of nodes propagating through fibre is 1254.4\n",
"number of nodes propagating through graded index fibre is 627\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 12.2, Page number 27"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"lamda=1*10**-6; #wavelength of light(m)\n",
"n1=1.45; #refractive index of core\n",
"n2=1.448; #refractive index of cladding\n",
"d=6*10**-6; #diameter of core(m)\n",
"\n",
"#Calculation\n",
"NA=math.sqrt((n1**2)-(n2**2)); #numerical aperture\n",
"N=4.9*(d*NA/lamda)**2; #number of nodes propagating through fibre\n",
"\n",
"#Result\n",
"print \"number of nodes allowed to propagate through fibre is\",int(N)\n",
"print \"it is a single mode fibre\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"number of nodes allowed to propagate through fibre is 1\n",
"it is a single mode fibre\n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|