summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_V_Rajendran/Chapter11.ipynb
blob: 3f04726eeff696717cbc062accfb50ca39b9bddf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
{
 "metadata": {
  "name": "",
  "signature": "sha256:c3dcf79a03b4887493b03eb7567c9289353e41ba9f42b1e11e4742e5d995690d"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "11: Laser"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.1, Page number 33"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "lamda=590*10**-9;    #wavelength of sodium D line(m)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "c=3*10**8;     #velocity of light(m/s)\n",
      "e=1.602*10**-19;  #charge of electron(eV)\n",
      "\n",
      "#Calculation\n",
      "E=h*c/lamda;   #energy of 1st excited state(J)\n",
      "E=E/e;   #energy of 1st excited state(eV)\n",
      "\n",
      "#Result\n",
      "print \"energy of 1st excited state is\",round(E,1),\"eV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "energy of 1st excited state is 2.1 eV\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.2, Page number 34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "T=250+273;   #temperature(K)\n",
      "lamda=590*10**-9;    #wavelength of sodium D line(m)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "c=3*10**8;     #velocity of light(m/s)\n",
      "k=1.38*10**-23;   #boltzmann constant\n",
      "\n",
      "#Calculation\n",
      "a=h*c/(k*T*lamda);\n",
      "N2byN1=math.exp(-a);    #ratio between atoms in 1st excited state and ground state\n",
      "\n",
      "#Result\n",
      "print \"ratio between atoms in 1st excited state and ground state is\",round(N2byN1*10**21,2),\"*10**-21\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "ratio between atoms in 1st excited state and ground state is 5.33 *10**-21\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.3, Page number 34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "T=250+273;   #temperature(K)\n",
      "lamda=590*10**-9;    #wavelength of sodium D line(m)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "c=3*10**8;     #velocity of light(m/s)\n",
      "k=1.38*10**-23;   #boltzmann constant\n",
      "\n",
      "#Calculation\n",
      "a=h*c/(k*T*lamda);\n",
      "N2byN1=1/(math.exp(a)-1);    #ratio between stimulated emission and spontaneous emission\n",
      "\n",
      "#Result\n",
      "print \"ratio between stimulated emission and spontaneous emission is\",round(N2byN1*10**21,4),\"*10**-21\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "ratio between stimulated emission and spontaneous emission is 5.3298 *10**-21\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.4, Page number 35"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "n0=1.76;    #refractive index of ruby rod\n",
      "new0=4.3*10**14;   #frequency(Hz)\n",
      "deltav0=1.5*10**11;   #doppler broadening(Hz)\n",
      "c=3*10**8;     #velocity of light(m/s)\n",
      "tow21=4.3*10**-3;    #lifetime of spontaneous emission(s)\n",
      "tow_photon=6*10**-9;   #lifetime of photon(s)\n",
      "\n",
      "#Calculation\n",
      "a=4*math.pi**2*new0**2*n0**3/(c**3);\n",
      "N2_N1=a*tow21*deltav0/tow_photon;     #difference between excited state and ground state population(per m**3)\n",
      "\n",
      "#Result\n",
      "print \"difference between excited state and ground state population is\",round(N2_N1*10**-23,3),\"*10**23 per m**3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "difference between excited state and ground state population is 1.584 *10**23 per m**3\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.5, Page number 35"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "T=300;   #temperature(K)\n",
      "lamda=5000*10**-10;    #wavelength of light(m)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "c=3*10**8;     #velocity of light(m/s)\n",
      "k=1.38*10**-23;   #boltzmann constant\n",
      "\n",
      "#Calculation\n",
      "a=h*c/(k*T*lamda);\n",
      "N2byN1=1/(math.exp(a)-1);    #ratio between stimulated emission and spontaneous emission\n",
      "\n",
      "#Result\n",
      "print \"ratio between stimulated emission and spontaneous emission is\",round(N2byN1*10**42),\"*10**-42\"\n",
      "print \"answer varies due to rounding off errors\"\n",
      "print \"spontaneous emission is more predominant than that of stimulated emission. for stimulating emission, N2>>N1. therefore there is no amplification possibility\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "ratio between stimulated emission and spontaneous emission is 2.0 *10**-42\n",
        "answer varies due to rounding off errors\n",
        "spontaneous emission is more predominant than that of stimulated emission. for stimulating emission, N2>>N1. therefore there is no amplification possibility\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.6, Page number 36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "lamda=632.8*10**-9;    #wavelength of laser beam(m)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "c=3*10**8;     #velocity of light(m/s)\n",
      "P=2.3*10**-3;   #output power(W)\n",
      "\n",
      "#Calculation\n",
      "new=c/lamda;    #frequency of photon(Hz)\n",
      "E=h*new;    #energy of photon(J)\n",
      "El=P*60;   #energy emitted by laser(J/min)\n",
      "n=El/E;    #number of photons emitted(photons/min)\n",
      "\n",
      "#Result\n",
      "print \"number of photons emitted is\",round(n*10**-17,3),\"*10**17 photons/min\"\n",
      "print \"answer varies due to rounding off errors\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "number of photons emitted is 4.393 *10**17 photons/min\n",
        "answer varies due to rounding off errors\n"
       ]
      }
     ],
     "prompt_number": 22
    }
   ],
   "metadata": {}
  }
 ]
}