1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
|
{
"metadata": {
"name": "",
"signature": "sha256:12b212fa69742f446e6918a565a72f52e2d9500de27031b4c21c41162a940ee1"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"9: Motion of the charged particle in electric and magnetic field"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.1, Page number 230"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"L=1.33*10**-22; #angular momentum(kg m**2/sec)\n",
"B=0.025; #magnetic field(Wb/m**2)\n",
"m=6.68*10**-27; #mass of alpha particle(kg)\n",
"q=3.2*10**-19; #charge of alpha particle(c)\n",
"e=1.6*10**-19; #charge of electron(c)\n",
"\n",
"#Calculation\n",
"w=(B*q)/m; #angular velocity\n",
"E=0.5*L*w; #KE of particle(J)\n",
"E=E/e; #KE of particle(eV)\n",
"\n",
"#Result\n",
"print \"KE of particle is\",round(E,2),\"eV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"KE of particle is 497.75 eV\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.2, Page number 230"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"R=0.35; #radius of cyclotron(m)\n",
"n=1.38*10**7; #frequency(Hz)\n",
"m=1.67*10**-27; #mass of proton(kg)\n",
"q=1.6*10**-19; #charge of proton(c)\n",
"\n",
"#Calculation\n",
"B=(2*math.pi*n*m)/q; #magnetic field induction(Wb/m**2)\n",
"E=((B**2)*(q**2)*(R**2))/(2*m); #maximum energy of proton(J)\n",
"E=E/q; #maximum energy of proton(eV)\n",
"\n",
"#Result\n",
"print \"magnetic field induction is\",round(B,3),\"Wb/m**2\"\n",
"print \"maximum energy of proton is\",round(E/10**6,1),\"MeV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"magnetic field induction is 0.905 Wb/m**2\n",
"maximum energy of proton is 4.8 MeV\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.3, Page number 231"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"m=9.1*10**-31; #mass of electron(kg)\n",
"e=1.6*10**-19; #charge of electron(c)\n",
"V=1000; #potential difference(V)\n",
"B=1.19*10**-3; #magnetic field of induction(Wb/m**2)\n",
"\n",
"#Calculation\n",
"#due to potential difference V, electron is accelerated\n",
"#eV=0.5*m*(v^2)\n",
"#due to transverse magnetic field B electron moves in circular path of radius R\n",
"#(m*(v^2))/R=BeV\n",
"v=math.sqrt((2*e*V)/m); #velocity(m/sec)\n",
"R=(m*v)/(B*e); #radius of electron trajectory(m)\n",
"L=m*v*R; #angular momentum(kg m**2/sec)\n",
"\n",
"#Result\n",
"print \"radius of electron trajectory is\",round(R*100,3),\"cm\"\n",
"print \"angular momentum of electron is\",round(L/10**-28,2),\"*10**-28 kg m**2/sec\"\n",
"print \"answer for angular momentum varies due to rounding off errors\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"radius of electron trajectory is 8.962 cm\n",
"angular momentum of electron is 15294.12 *10**-28 kg m**2/sec\n",
"answer for angular momentum varies due to rounding off errors\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.4, Page number 231"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"vx=1.7*10**7; #horizontal velociy(m/sec)\n",
"Ey=3.4*10**4; #electric field(V/m)\n",
"x=3*10**-2; #horizontal displacement(m)\n",
"m=9.1*10**-31; #mass of electron(kg)\n",
"e=1.6*10**-19; #charge of electron(c)\n",
"\n",
"#Calculation\n",
"t=x/vx; #time(sec)\n",
"#y=0.5*ay*(t^2)\n",
"ay=(e*Ey)/m; #acceleration(m/sec**2)\n",
"y=0.5*ay*(t**2); #vertical displacement(m)\n",
"Bz=Ey/vx; #magnitude of magnetic field(Wb/m**2) \n",
"\n",
"#Result\n",
"print \"vertical displacement of electron is\",round(y*100,4),\"cm\"\n",
"print \"answer varies due to rounding off errors\"\n",
"print \"magnitude of magnetic field is\",Bz,\"Wb/m**2\"\n",
"print \"direction of field is upward as Ey is downward\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"vertical displacement of electron is 0.9308 cm\n",
"answer varies due to rounding off errors\n",
"magnitude of magnetic field is 0.002 Wb/m**2\n",
"direction of field is upward as Ey is downward\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.5, Page number 232"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"m=1.67*10**-27; #mass of proton(kg)\n",
"q=1.6*10**-19; #charge of proton(c)\n",
"B=0.5; #magnetic field(Wb/m**2)\n",
"R=1; #radius of cyclotron(m)\n",
"\n",
"\n",
"#Calculation\n",
"n=((B*q)/(2*math.pi*m)); #frequency of oscillation voltage(Hz)\n",
"E=((B**2)*(q**2)*(R**2))/(2*m); #maximum energy of proton(J)\n",
"E=E/q; #maximum energy of proton(eV)\n",
"\n",
"#Result\n",
"print \"frequency of oscillation voltage is\",round(n/10**6,3),\"MHz\"\n",
"print \"maximum energy of proton is\",round(E/10**6,3),\"MeV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"frequency of oscillation voltage is 7.624 MHz\n",
"maximum energy of proton is 11.976 MeV\n"
]
}
],
"prompt_number": 31
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.6, Page number 232"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"q=3.2*10**-19 #charge of a9lpha particle(c)\n",
"m=6.68*10**-27; #mass(kg) \n",
"B=1.5; #magnetic field(Wb/m**2)\n",
"v=7.263*10**6; #velocity(m/s) \n",
"\n",
"#Calculation\n",
"F=B*q*v; #force on particle(N)\n",
"T=(2*math.pi*m)/(B*q); #periodic time(sec)\n",
"n=1/T; #resonance frequency(Hz)\n",
"\n",
"#Result\n",
"print \"force on particle is\",round(F*10**13,2),\"*10**-13 N\"\n",
"print \"periodic time is\",round(T*10**8,3),\"*10**-8 sec\"\n",
"print \"answer for periodic time varies due to rounding off errors\"\n",
"print \"resonance frequency is\",round(n/10**6,2),\"MHz\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"force on particle is 34.86 *10**-13 N\n",
"periodic time is 8.744 *10**-8 sec\n",
"answer for periodic time varies due to rounding off errors\n",
"resonance frequency is 11.44 MHz\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.7, Page number 233"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"n=1.2*10**7; #frequency(Hz)\n",
"mp=1.67*10**-27; #mass of proton(kg)\n",
"qp=1.6*10**-19; #charge of proton(c)\n",
"R=0.5; #radius(m)\n",
"malp=6.68*10**-27; #mass of alpha particle(kg)\n",
"\n",
"#Calculation\n",
"Bp=(2*math.pi*mp*n)/qp; #flux density for proton(Wb/m**2)\n",
"Ep=((Bp**2)*(qp**2)*(R**2))/(2*mp); #energy of proton(J)\n",
"Ep=Ep/qp; #energy of proton(eV)\n",
"qalp=2*qp; #charge of alpha particle(c)\n",
"Balp=(2*math.pi*malp*n)/qalp; #flux density of alpha particle(Wb/m**2)\n",
"Ealp=((Balp**2)*(qalp**2)*(R**2))/(2*malp); #energy of alpha particle(J)\n",
"Ealp=Ealp/qp; #energy of alpha particle(eV)\n",
"\n",
"#Result\n",
"print \"flux density for proton is\",round(Bp,5),\"Wb/m**2\"\n",
"print \"flux density for alpha particle is\",round(Balp,4),\"Wb/m**2\"\n",
"print \"energy of proton is\",round(Ep/10**6,2),\"MeV\"\n",
"print \"energy of alpha particle is\",round(Ealp/10**6,2),\"MeV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"flux density for proton is 0.78697 Wb/m**2\n",
"flux density for alpha particle is 1.5739 Wb/m**2\n",
"energy of proton is 7.42 MeV\n",
"energy of alpha particle is 29.67 MeV\n"
]
}
],
"prompt_number": 42
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.8, Page number 233"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"e=1.6*10**-19; #charge of electron(c) \n",
"me=9.1*10**-31; #mass of electron(kg)\n",
"malp=6.68*10**-27; #mass of alpha particle(kg)\n",
"B=0.05; #magnetic field(Wb/m**2)\n",
"V=20*10**3; #potential difference(V)\n",
"\n",
"#Calculation\n",
"q=2*e; #charge of alpha particle(c)\n",
"#v=sqrt((2*q*V)/m)\n",
"#R=(1/B)*sqrt((2*m*V)/q)\n",
"Re=(1/B)*math.sqrt((2*me*V)/e); #radius of electron(m)\n",
"Ralp=(1/B)*math.sqrt((2*malp*V)/q); #radius of alpha particle(m)\n",
"S=2*Ralp-2*Re; #linear separation between two particles(m)\n",
"\n",
"#Result\n",
"print \"linear separation between two particles on common boundary wall is\",round(S*100,1),\"cm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"linear separation between two particles on common boundary wall is 113.7 cm\n"
]
}
],
"prompt_number": 45
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.9, Page number 234"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"V1=200; #potential difference(V)\n",
"i=60; #angle(degrees)\n",
"r=45; #angle(degrees)\n",
"\n",
"#Calculation\n",
"#electrostatic focusing condition (sini/sinr)=(v2/v1)=sqrt(V2/V1)\n",
"#0.5mv2=eV\n",
"i=i*(math.pi/180); #angle(radian)\n",
"r=r*(math.pi/180); #angle(radian)\n",
"V2=V1*((math.sin(i)/math.sin(r))**2); #potential difference(V)\n",
"pd=V2-V1; #potential difference(V)\n",
"\n",
"#Result\n",
"print \"potential difference between two regions is\",pd,\"V\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"potential difference between two regions is 100.0 V\n"
]
}
],
"prompt_number": 46
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.10, Page number 235"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"E=250; #electric field(V/m)\n",
"R=10**-8; #radius of drop(m)\n",
"rho=10**3; #density of water(kg/m**3)\n",
"\n",
"#Calculation\n",
"#F=mg=qE\n",
"m=(4/3)*math.pi*(R**3)*rho; #mass of water drop(kg)\n",
"W=m*9.8; #weight of drop\n",
"q=W/E; #charge on water drop(C)\n",
"\n",
"#Result\n",
"print \"charge on water drop is\",round(q*10**21,3),\"*10**-21 C\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"charge on water drop is 0.164 *10**-21 C\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.11, Page number 235"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"e=1.6*10**-19; #charge of electron(c)\n",
"v=5*10**5; #velocity(m/s)\n",
"B=0.3; #flux density(Wb/m**2)\n",
"N=6.025*10**26; #avagadro number\n",
"M72=72/N; #mass(kg)\n",
"M74=74; #mass(kg)\n",
"\n",
"#Calculation\n",
"R72=(M72*v)/(B*e); #radius(m)\n",
"R74=(R72/72)*M74; #radius(m)\n",
"S=2*(R74-R72); #linear separation of two lines(m)\n",
"\n",
"#Result\n",
"print \"linear separation of two lines is\",round(S,3),\"m\"\n",
"print \"answer given in the book is wrong\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"linear separation of two lines is 0.069 m\n",
"answer given in the book is wrong\n"
]
}
],
"prompt_number": 58
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.12, Page number 236"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"l=5*10**-2; #length(m)\n",
"d=0.3; #distance of screen from end of magnetic field(m)\n",
"y=0.01; #deflection on screen(m)\n",
"m=9.1*10**-31; #mass of electron(kg)\n",
"e=1.6*10**-19; #charge of electron(C)\n",
"Va=1000; #anode voltage(V)\n",
"\n",
"#Calculation\n",
"D=d+(l/2); #distance(m)\n",
"B=(y/(D*l))*math.sqrt((2*m*Va)/e); #flux density(Wb/m**2)\n",
"\n",
"#Result\n",
"print \"flux density is\",round(B*10**6,1),\"*10**-6 Wb/m**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"flux density is 65.6 *10**-6 Wb/m**2\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 9.13, Page number 236"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"e=1.6*10**-19; #charge of electron(C)\n",
"Va=150; #potential difference(V)\n",
"m=9.1*10**-31; #mass of electron(kg)\n",
"V=20; #potential(V)\n",
"D=1/2;\n",
"d=10**-2; #distance of seperation(m)\n",
"l=10*10**-2; #length(m)\n",
"\n",
"#Calculation\n",
"vx=math.sqrt((2*e*Va)/m); #velocity of electron reacting the field(m/s)\n",
"ay=(e/m)*(V/d); #acceleration due to deflecting field(m/s**2)\n",
"vy=ay*(l/vx); #final velocity attained by deflecting field(m/s)\n",
"theta=math.atan(vy/vx); #angle of deflection(radian)\n",
"thetaD=theta*(180/math.pi); #angle of deflection(degrees)\n",
"Y=D*math.tan(theta); #deflection on screen(m)\n",
"S=(Y/V); #deflection senstivity(m/V)\n",
"\n",
"\n",
"#Result\n",
"print \"velocity of electron reacting the field is\",round(vx/10**6,2),\"*10**6 m/s\"\n",
"print \"acceleration due to deflecting field is\",round(ay*10**-14,3),\"*10**14 m/s**2\"\n",
"print \"final velocity attained by deflecting field is\",round(vy/10**6,1),\"*10**6 m/s\"\n",
"print \"angle of deflection is\",round(thetaD,2),\"degrees\"\n",
"print \"answer varies due to rounding off errors\"\n",
"print \"deflection on screen is\",round(Y,2),\"m\"\n",
"print \"deflection senstivity is\",round(S,4),\"m/V\"\n",
"print \"answer varies due to rounding off errors\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"velocity of electron reacting the field is 7.26 *10**6 m/s\n",
"acceleration due to deflecting field is 3.516 *10**14 m/s**2\n",
"final velocity attained by deflecting field is 4.8 *10**6 m/s\n",
"angle of deflection is 33.69 degrees\n",
"answer varies due to rounding off errors\n",
"deflection on screen is 0.33 m\n",
"deflection senstivity is 0.0167 m/V\n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|