1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
{
"metadata": {
"name": "",
"signature": "sha256:6e57ef3dccc3c7eb94a4d9debf60856f056a841840d4cb2d77b1c0cffbc72c7b"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"11: Laser, holography and Fibre optics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 11.1, Page number 317"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"n1=1.53; #refractive index of core\n",
"n2=1.5; #refractive index of cladding\n",
"lamda=1*10**-6; #wavelength(m)\n",
"a=50*10**-6; #core radius(m)\n",
"\n",
"#Calculation\n",
"NA=math.sqrt((n1**2)-(n2**2)); #numerical aperture(m)\n",
"V=((2*math.pi*a)*NA)/lamda; #normalised frequency\n",
"M=(V**2)/2; #number of guided mode\n",
"\n",
"#Result\n",
"print \"normalised frequency is\",round(V,2)\n",
"print \"number of guided mode is\",round(M)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"normalised frequency is 94.72\n",
"number of guided mode is 4486.0\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 11.2, Page number 317"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"n1=1.53; #refractive index of core\n",
"n2=1.5; #refractive index of cladding\n",
"lamda=1*10**-6; #wavelength(m)\n",
"\n",
"#Calculation\n",
"NA=math.sqrt((n1**2)-(n2**2)); #numerical aperture(m)\n",
"a=(2.405*lamda)/(2*math.pi*NA); #core radius(m)\n",
"\n",
"#Result\n",
"print \"core radius is less than\",round(a*10**6,2),\"micro m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"core radius is less than 1.27 micro m\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 11.3, Page number 317"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"NA=0.5; #numerical aperture(m)\n",
"n1=1.54; #refractive index of core\n",
"\n",
"#Calculation\n",
"n2=math.sqrt((n1**2)-(NA**2)); #refractive index of cladding\n",
"n=(n1-n2)/n1; #change in core cladding refractive index\n",
"\n",
"#Result\n",
"print \"refractive index of cladding is\",round(n2,4)\n",
"print \"change in core cladding refractive index is\",round(n,4)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"refractive index of cladding is 1.4566\n",
"change in core cladding refractive index is 0.0542\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 11.4, Page number 318"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"NA=0.5; #numerical aperture(m)\n",
"n1=1.48; #refractive index of core\n",
"\n",
"#Calculation\n",
"n2=math.sqrt((n1**2)-(NA**2)); #refractive index of cladding\n",
"alpha=math.asin(NA); #acceptance angle(radian)\n",
"alpha=alpha*(180/math.pi); #acceptance angle(degrees)\n",
"\n",
"#Result\n",
"print \"refractive index of cladding is\",round(n2,3)\n",
"print \"acceptance angle is\",alpha,\"degrees\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"refractive index of cladding is 1.393\n",
"acceptance angle is 30.0 degrees\n"
]
}
],
"prompt_number": 13
}
],
"metadata": {}
}
]
}
|