1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
{
"metadata": {
"name": "",
"signature": "sha256:38e4520c8655f11fdcb5696673580e95d36ab2ce43843aea287c93b1f1a0b257"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"10: Quantum Physics and Schrodinger wave equation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 10.1, Page number 258"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"me=9.1*10**-31; #mass of electron(kg)\n",
"h=6.625*10**-34; #planck's constant(Jsec)\n",
"deltax=10**-8; #uncertainity in position(m)\n",
"\n",
"#Calculation\n",
"deltap=(h/(2*math.pi*deltax)); #uncertainity principle(kgm/sec)\n",
"deltav=(deltap/me); #minimum uncertainity in velocity(m/sec)\n",
"\n",
"#Result\n",
"print \"minimum uncertainity in velocity is\",round(deltav/10**5,3),\"*10**5 m/sec\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"minimum uncertainity in velocity is 0.116 *10**5 m/sec\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 10.2, Page number 259"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"lamda=0.2865*10**-10; #wavelength(m)\n",
"mp=1.67*10**-27; #mass of proton(kg)\n",
"h=6.625*10**-34; #planck's constant(Jsec)\n",
"q=1.6*10**-19; #charge of proton(C)\n",
"\n",
"#Calculation\n",
"v=(h/(mp*lamda)); #velocity(m/sec)\n",
"KE=0.5*mp*(v**2); #kinetic energy of proton(J)\n",
"KE=KE/q; #kinetic energy of proton(eV)\n",
"\n",
"#Result\n",
"print \"kinetic energy of proton is\",int(KE),\"eV\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"kinetic energy of proton is 1 eV\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 10.3, Page number 259"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"KE=0.025; #kinetic energy of neutron(eV)\n",
"q=1.6*10**-19; #charge of proton(C)\n",
"mn=1.676*10**-27; #mass of neutron(kg)\n",
"h=6.625*10**-34; #planck's constant(Jsec)\n",
"me=9.1*10**-31; #mass of electron(kg)\n",
"c=3*10**8; #velocity of light(m/s)\n",
"\n",
"#Calculation\n",
"KE=KE*q; #kinetic energy of neutron(J)\n",
"v=math.sqrt((2*KE)/mn); #velocity(m/s)\n",
"lamdan=h/(mn*v); #debroglie wavelength of neutron(m)\n",
"p=(h/lamdan); #momentum of electron and photon(kgm/s)\n",
"ve=(p/me); #velocity of electron(m/s)\n",
"Ee=0.5*p*ve; #energy of electron(J)\n",
"Ee=Ee/q; #energy of electron(eV)\n",
"Ep=h*c/lamdan; #energy of photon(J)\n",
"Ep=Ep/q; #energy of photon(eV)\n",
"\n",
"#Result\n",
"print \"wavelength of beam of neutron is\",round(lamdan*10**10,3),\"angstrom\"\n",
"print \"momentum of electron and photon is\",p,\"kgm/s\"\n",
"print \"energy of electron is\",round(Ee,2),\"eV\"\n",
"print \"energy of photon is\",round(Ep/10**3,2),\"*10**3 eV\"\n",
"print \"answers in the book vary due to rounding off errors\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"wavelength of beam of neutron is 1.809 angstrom\n",
"momentum of electron and photon is 3.66169359723e-24 kgm/s\n",
"energy of electron is 46.04 eV\n",
"energy of photon is 6.87 *10**3 eV\n",
"answers in the book vary due to rounding off errors\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 10.4, Page number 260"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"e=1.6*10**-19; #charge of electron(C)\n",
"V=200; #potential difference(V)\n",
"lamda=0.0202*10**-10; #debroglie wavelength(m)\n",
"h=6.625*10**-34; #planck's constant(Jsec)\n",
"\n",
"#Calculation\n",
"#eV=0.5*m*(v^2)\n",
"#mv=sqrt(2*m*eV)\n",
"m=((h**2)/(2*(lamda**2)*e*V)); #mass of particle(kg)\n",
"\n",
"#Result\n",
"print \"mass of particle is\",m,\"kg\"\n",
"print \"hence it is a proton\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"mass of particle is 1.68069555834e-27 kg\n",
"hence it is a proton\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 10.5, Page number 260"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration \n",
"mn=1.676*10**-27; #mass of neutron(kg)\n",
"e=1.6*10**-19; #charge of electron(C)\n",
"h=6.622*10**-34; #planck's constant(Jsec)\n",
"\n",
"#Calculation\n",
"E=e; #energy of neutron(J)\n",
"v=math.sqrt((2*E)/mn); #velocity of neutron(m/sec)\n",
"lamda=(h/(mn*v)); #de-broglie wavelength(m)\n",
"\n",
"#Result\n",
"print \"de-broglie wavelength of neutron is\",round(lamda*10**10,3),\"angstrom\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"de-broglie wavelength of neutron is 0.286 angstrom\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 10.6, Page number 261"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration \n",
"r=10**-14; #radius(m)\n",
"h=6.625*10**-34; #planck's constant(Jsec)\n",
"c=3*10**8; #velocity of light(m/s)\n",
"mo=9.1*10**-31; #rest mass of particle(kg)\n",
"q=1.6*10**-19; #charge of electron(C)\n",
"\n",
"\n",
"#Calculation\n",
"#acc. to uncertainity principle delx*delp >= (h/2*%pi)\n",
"deltax=2*r; #uncertainity in position(m)\n",
"deltap=(h/(2*math.pi*deltax)); ##uncertainity in momentum\n",
"#from einstein's relavistic relation E=mc2=KE+rest mass energy=0.5mv2+moc2\n",
"#when velocity of particle is very high\n",
"#m=(mo/sqrt(1-((v/c)^2))) where m-mass of particle with velocity v,mo-rest mass of particle, c-velocity of particle\n",
"p=deltap #assume\n",
"E=math.sqrt(((p*c)**2)+((mo*(c**2))**2)); #energy(J)\n",
"E=E/q; #energy(eV)\n",
"\n",
"#Result\n",
"print \"energy is\",round(E/10**6),\"MeV\"\n",
"print \"this value is much higher than experimentally obtained values of energy of electron of a radioactive nuclei i.e 4 Mev this proves that electron cannot reside within nucleus\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"energy is 10.0 MeV\n",
"this value is much higher than experimentally obtained values of energy of electron of a radioactive nuclei i.e 4 Mev this proves that electron cannot reside within nucleus\n"
]
}
],
"prompt_number": 19
}
],
"metadata": {}
}
]
}
|