summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_Shyam_Rajeev/Chapter4.ipynb
blob: ff17ab660fb6224c175779d441f8d3f593290edc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
{
 "metadata": {
  "name": "",
  "signature": "sha256:cf0df6ad8ed22fd758025ea5993932acd38bbb0ea0e95c0a8bdc6e4a7c75be59"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "4: Fiber Optics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 4.1, Page number 126"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "mew = 1.5;          #refractive angle for glass\n",
      "\n",
      "#Calculation\n",
      "ip = math.atan(mew);         #brewster's angle(radian)\n",
      "ip = ip*180/math.pi;         #brewster's angle(degree)\n",
      "ip = math.ceil(ip*100)/100;   #rounding off to 2 decimals\n",
      "r = 90-ip;        #angle of refraction(degree)\n",
      "r = math.ceil(r*10)/10;   #rounding off to 1 decimal\n",
      "\n",
      "#Result\n",
      "print \"brewster's angle is\",ip,\"degrees\"\n",
      "print \"angle of refraction is\",r,\"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "brewster's angle is 56.31 degrees\n",
        "angle of refraction is 33.7 degrees\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 4.2, Page number 126"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "mew0 = 1.658;         #refractive index of calcite\n",
      "mew_layer = 1.550;    #refractive index of canada balsam\n",
      "\n",
      "#Calculation\n",
      "sinC = mew_layer/mew0;       \n",
      "C = math.asin(sinC);         #critical angle(radian)\n",
      "C = C*180/math.pi;           #critical angle(degrees)\n",
      "i = 90-C;              #maximum possible inclination(degrees)\n",
      "i = math.ceil(i*10)/10;   #rounding off to 1 decimal\n",
      "\n",
      "#Result\n",
      "print \"maximum possible inclination is\",i,\"degrees\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "maximum possible inclination is 20.8 degrees\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 4.3, Page number 126"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "mew0 = 1.544;         #refractive index of calcite\n",
      "mewe = 1.533;    #refractive index of canada balsam\n",
      "lamda = 5000;          #wavelength(angstrom)\n",
      "\n",
      "#Calculation\n",
      "lamda = lamda*10**-10;         #wavelength(m)\n",
      "t = lamda/(2*(mew0-mewe));         #thickness of half wave plate(m)\n",
      "t = t*10**4;\n",
      "t = math.ceil(t*10**4)/10**4;   #rounding off to 4 decimals\n",
      "\n",
      "#Result\n",
      "print \"thickness of half wave plate is\",t,\"*10**-4 m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "thickness of half wave plate is 0.2273 *10**-4 m\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 4.4, Page number 126"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "l = 20;        #length of glass tube(cm)\n",
      "theta = 26.2;       #polarisation angle(degrees)\n",
      "s = 20;          #weight of sugar(gm)\n",
      "w = 100;        #quantity of water(ml)\n",
      "\n",
      "#Calculation\n",
      "l = l/10;         #length of glass tube(dm)\n",
      "C = s/w;          #concentration(gm/cc)\n",
      "S = theta/(l*C);        #specific rotation(degrees per dm per(gm/cc))\n",
      "\n",
      "#Result\n",
      "print \"specific rotation of sugar is\",S,\"degrees per dm per(gm/cc)\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "specific rotation of sugar is 65.5 degrees per dm per(gm/cc)\n"
       ]
      }
     ],
     "prompt_number": 16
    }
   ],
   "metadata": {}
  }
 ]
}