1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
{
"metadata": {
"name": "",
"signature": "sha256:c64912256bdcf8bcc5ce71dffc2b43e608072175b592d01f0ff0fe3771ee0132"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"6: Non Destructive Testing"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 6.1, Page number 36"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"t=50; #thickness of metal(mm)\n",
"d=1; #hole diameter(mm)\n",
"\n",
"#Calculation\n",
"sp=(d/t)*100; #sensitivity percentage(%)\n",
"\n",
"#Result\n",
"print \"sensitivity percentage of wire is\",sp,\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"sensitivity percentage of wire is 2.0 %\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 6.2, Page number 37"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"I=20*10**-3; #tube current(A)\n",
"L=1; #source to film distance(m)\n",
"t=60; #exposure time(s)\n",
"\n",
"#Calculation\n",
"ef=I*t/(L**2); #exposure factor\n",
"\n",
"#Result\n",
"print \"exposure factor is\",ef"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"exposure factor is 1.2\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 6.3, Page number 37"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"IbyI0=20; #reduction in intensity\n",
"mew=1.62; #linear absorption coefficient(per cm)\n",
"\n",
"#Calculation\n",
"x=math.log(IbyI0)/mew; #thickness of aluminium(cm)\n",
"\n",
"#Result\n",
"print \"thickness of aluminium is\",round(x,2),\"*10**-2 m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"thickness of aluminium is 1.85 *10**-2 m\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 6.4, Page number 38"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"x=2.5*10**-2; #thickness of material(m)\n",
"mew=2; #linear absorption coefficient(per cm)\n",
"\n",
"#Calculation\n",
"\n",
"\n",
"#Result\n",
"print \" \""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 6.5, Page number 38"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"ef=0.35; #exposure factor(curie hour)\n",
"pss=5; #present source strength(curie)\n",
"\n",
"#Calculation\n",
"et=ef/pss; #exposure time(h)\n",
"\n",
"#Result\n",
"print \"exposure time is\",et*60,\"min\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"exposure time is 4.2 min\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example number 6.6, Page number 39"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"fd=20*10**-2; #film focus distance(m)\n",
"Sd=5*10**-2; #displacement of X-ray tube(m)\n",
"t=5*10**-2; #thickness of steel(m)\n",
"S=0.5*10**-2; #distance between images(m)\n",
"\n",
"#Calculation\n",
"d=fd*S/(S+Sd); #distance of flow from bottom surface(m)\n",
"l=t-d; #location of flow from top surface(m)\n",
"\n",
"#Result\n",
"print \"location of flow from top surface is\",round(l*10**2,1),\"*10**-2 m\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"location of flow from top surface is 3.2 *10**-2 m\n"
]
}
],
"prompt_number": 12
}
],
"metadata": {}
}
]
}
|