summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_Rajendran/Chapter17.ipynb
blob: 7f40976f69a9130d52b436b4ae81d41ae482a22d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
{
 "metadata": {
  "name": "",
  "signature": "sha256:fde95e6d9c736121aaabaa0d5609f06ddf07df078e4e974cfe128a5769da216f"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "17: Statistics and band theory of solids"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 17.1, Page number 23"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "rhoCu=8.96*10**3;   #density of Cu(kg/m**3)\n",
      "awCu=63.55;   #atomic weight of Cu\n",
      "nfCu=1*10**3;   #number of free electrons per Cu atom\n",
      "rhoZn=7.14*10**3;   #density of Zn(kg/m**3)\n",
      "awZn=65.38;   #atomic weight of Zn\n",
      "nfZn=2*10**3;   #number of free electrons per Zn atom\n",
      "rhoAl=2.7*10**3;   #density of Al(kg/m**3)\n",
      "awAl=27;   #atomic weight of Al\n",
      "nfAl=3*10**3;   #number of free electrons per Al atom\n",
      "N=6.022*10**23;   #avagadro constant\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "me=9.1*10**-31;   #mass of electron(kg)\n",
      "e=1.6*10**-19;   #electron charge(c)\n",
      "\n",
      "#Calculation\n",
      "nCu=rhoCu*N*nfCu/awCu;   #concentration of electrons in Cu(per m**3)\n",
      "EF0Cu=(h**2/(8*me))*(3*nCu/math.pi)**(2/3);   #fermi energy of Cu at 0K(J)\n",
      "EF0Cu=EF0Cu/e;    #fermi energy of Cu at 0K(eV)\n",
      "nZn=rhoZn*N*nfZn/awZn;   #concentration of electrons in Zn(per m**3)\n",
      "EF0Zn=(h**2/(8*me))*(3*nZn/math.pi)**(2/3);   #fermi energy of Zn at 0K(J)\n",
      "EF0Zn=EF0Zn/e;    #fermi energy of Zn at 0K(eV)\n",
      "nAl=rhoAl*N*nfAl/awAl;   #concentration of electrons in Al(per m**3)\n",
      "EF0Al=(h**2/(8*me))*(3*nAl/math.pi)**(2/3);   #fermi energy of Al at 0K(J)\n",
      "EF0Al=EF0Al/e;    #fermi energy of Al at 0K(eV)\n",
      "\n",
      "#Result\n",
      "print \"fermi energy of Cu at 0K is\",round(EF0Cu,4),\"eV\"\n",
      "print \"fermi energy of Zn at 0K is\",round(EF0Zn,2),\"eV\"\n",
      "print \"fermi energy of Al at 0K is\",round(EF0Al,2),\"eV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "fermi energy of Cu at 0K is 7.0608 eV\n",
        "fermi energy of Zn at 0K is 9.45 eV\n",
        "fermi energy of Al at 0K is 11.68 eV\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 17.2, Page number 25"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "nCu=8.4905*10**28;     #concentration of electrons in Cu(per m**3)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "me=9.1*10**-31;   #mass of electron(kg)\n",
      "gama=6.82*10**27;\n",
      "\n",
      "#Calculation\n",
      "EF0=(h**2/(8*me))*(3*nCu/math.pi)**(2/3);   #fermi energy of Cu at 0K(J)\n",
      "EF=EF0/e;    #fermi energy of Cu at 0K(eV)\n",
      "DE=(gama/2)*math.sqrt(EF);    #density of states for Cu at fermi level(per m**3)\n",
      "\n",
      "#Result\n",
      "print \"density of states for Cu at fermi level is\",int(DE/10**27),\"*10**27 per m**3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "density of states for Cu at fermi level is 9 *10**27 per m**3\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 17.3, Page number 26"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "rhoNi=69*10**-9;   #resistivity of Ni(ohm m)\n",
      "rhoCr=129*10**-9;  #resistivity of Cr(ohm m)\n",
      "rho=1120*10**-9;   #resistivity(ohm m) \n",
      "X=0.8;   \n",
      "\n",
      "#Calculation\n",
      "C=rho/(X*(1-X));   #Nordheim's coefficient(ohm m)\n",
      "\n",
      "#Result\n",
      "print \"Nordheim's coefficient is\",C,\"ohm m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Nordheim's coefficient is 7e-06 ohm m\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 17.4, Page number 26"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "rho=2.7*10**3;   #density of Al(kg/m**3)\n",
      "M=27;   #atomic weight of Al \n",
      "tow_r=10**-14;   #relaxation time(s)\n",
      "e=1.6*10**-19;   #charge of electron(c)  \n",
      "NA=6.022*10**23;   #avagadro constant\n",
      "m=9.1*10**-31;   #mass of electron(kg)\n",
      "f=3*10**3;   #number of free electrons per atom\n",
      "\n",
      "#Calculation\n",
      "n=rho*NA*f/M;    #number of electrons available per m**3\n",
      "sigma=n*e**2*tow_r/m;    #conductivity of Al(ohm m) \n",
      "\n",
      "#Result\n",
      "print \"conductivity of Al is\",round(sigma/10**7,4),\"*10**7 ohm m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "conductivity of Al is 5.0823 *10**7 ohm m\n"
       ]
      }
     ],
     "prompt_number": 7
    }
   ],
   "metadata": {}
  }
 ]
}