summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_Rajendran/Chapter14.ipynb
blob: b3653caa8af2971c16c4934cb7427025dd43ecb7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
{
 "metadata": {
  "name": "",
  "signature": "sha256:ea49c9c54a7abfea63e3838cff940d23d5976ae6af1b86c7e497f10ce35239cd"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "14: Waves and Particles"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14.1, Page number 17"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "V=150;    #potential difference(V)\n",
      "e=1.6*10**-19;   #charge of electron(c)\n",
      "m=9.1*10**-31;   #mass of electron(kg)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "\n",
      "#Calculation\n",
      "lamda=h/math.sqrt(2*m*e*V);    #de broglie wavelength of electron(m)\n",
      "\n",
      "#Result\n",
      "print \"de broglie wavelength of electron is\",round(lamda*10**10,5),\"*10**-10 m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "de broglie wavelength of electron is 1.00256 *10**-10 m\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14.2, Page number 17"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "E=0.025;    #energy of electron(MeV)\n",
      "e=1.6*10**-19;   #charge of electron(c)\n",
      "m=9.1*10**-31;   #mass of electron(kg)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "\n",
      "#Calculation\n",
      "E=E*10**6*e;   #energy of electron(J)\n",
      "v=math.sqrt(2*E/m);   #velocity of electron(m/s)\n",
      "lamda=h/(m*v);    #de broglie wavelength(m)\n",
      "\n",
      "#Result\n",
      "print \"de broglie wavelength is\",round(lamda*10**10,5),\"angstrom\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "de broglie wavelength is 0.07766 angstrom\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14.3, Page number 18"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "E=1;    #kinetic energy of electron(MeV)\n",
      "e=1.6*10**-19;   #charge of electron(c)\n",
      "m=9.1*10**-31;   #mass of electron(kg)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "\n",
      "#Calculation\n",
      "E=E*10**6*e;   #energy of electron(J)\n",
      "v=math.sqrt(2*E/m);   #velocity of electron(m/s)\n",
      "lamda=h/(m*v);    #de broglie wavelength of electron(m)\n",
      "\n",
      "#Result\n",
      "print \"de broglie wavelength of electron is\",round(lamda*10**10,5),\"angstrom\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "de broglie wavelength of electron is 0.01228 angstrom\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14.4, Page number 18"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "V=100;    #potential difference(V)\n",
      "e=1.6*10**-19;   #charge of electron(c)\n",
      "m=9.1*10**-31;   #mass of electron(kg)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "c=3*10**8;    #velocity of light(m/s)\n",
      "\n",
      "#Calculation\n",
      "v=math.sqrt(2*e*V/m);   #velocity of electron(m/s)\n",
      "u=c**2/v;     #phase velocity of electron(m/s)\n",
      "lamda=h/(m*v);    #de broglie wavelength of electron(m)\n",
      "p=m*v;    #momentum of electron(kg m/s)\n",
      "vbar=1/lamda;   #wave number of electron wave(per m)\n",
      "\n",
      "#Result\n",
      "print \"velocity of electron is\",round(v/10**6,5),\"*10**6 m/s\"\n",
      "print \"phase velocity of electron is\",round(u/10**10,4),\"*10**10 m/s\"\n",
      "print \"de broglie wavelength of electron is\",round(lamda*10**10,3),\"angstrom\"\n",
      "print \"momentum of electron is\",round(p*10**24,3),\"*10**-24 kg m/s\"\n",
      "print \"wave number of electron wave is\",round(vbar/10**9,3),\"*10**9 per m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "velocity of electron is 5.92999 *10**6 m/s\n",
        "phase velocity of electron is 1.5177 *10**10 m/s\n",
        "de broglie wavelength of electron is 1.228 angstrom\n",
        "momentum of electron is 5.396 *10**-24 kg m/s\n",
        "wave number of electron wave is 8.144 *10**9 per m\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14.5, Page number 19"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "deltax=10**-14;   #radius of nucleus(m)\n",
      "m=1.67*10**-27;   #mass of proton(kg)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "e=1.6*10**-19;   #charge of electron(c)\n",
      "\n",
      "#Calculation\n",
      "deltap=h/(2*math.pi*deltax);   #uncertainity in momentum of proton(kg m/s)\n",
      "KE=deltap**2/(2*m);    #minimum kinetic energy of proton(J)\n",
      "KE=KE/(e*10**6);    #minimum kinetic energy of proton(MeV)\n",
      "\n",
      "#Result\n",
      "print \"uncertainity in momentum of proton is\",round(deltap*10**20,4),\"*10**-20 kg m/s\"\n",
      "print \"minimum kinetic energy of proton is\",round(KE,3),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "uncertainity in momentum of proton is 1.0546 *10**-20 kg m/s\n",
        "minimum kinetic energy of proton is 0.208 MeV\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14.6, Page number 20"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "deltax=0.1*10**-10;   #uncertainity in position of electron(m)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "\n",
      "#Calculation\n",
      "deltap=h/(2*math.pi*deltax);   #uncertainity in momentum of electron(kg m/s)\n",
      "\n",
      "#Result\n",
      "print \"uncertainity in momentum of electron is\",round(deltap*10**23,4),\"*10**-23 kg m/s\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "uncertainity in momentum of electron is 1.0546 *10**-23 kg m/s\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 14.7, Page number 20"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m=9.1*10**-31;   #mass of electron(kg)\n",
      "h=6.626*10**-34;   #planck's constant\n",
      "a=1*10**-10;   #width of potential wall(m)\n",
      "n1=1; \n",
      "n2=2;\n",
      "n3=3;\n",
      "e=6.24*10**18;  #conversion factor from J to eV\n",
      "\n",
      "#Calculation\n",
      "En=(h**2)/(8*m*(a**2));   #energy of electron(J)\n",
      "E1=En*n1**2;   #energy of 1st excited state(J)\n",
      "E1=E1*e;   #energy of 1st excited state(eV)\n",
      "E2=En*n2**2;   #energy of 2nd excited state(J)\n",
      "E2=E2*e;   #energy of 2nd excited state(eV)\n",
      "E3=En*n3**2;   #energy of 3rd excited state(J)\n",
      "E3=E3*e;   #energy of 3rd excited state(eV)\n",
      "\n",
      "#Result\n",
      "print \"first 3 permitted energy levels of electron are\",round(E1,2),\"eV\",round(E2,2),\"eV and\",round(E3,2),\"eV\"\n",
      "print \"answers given in the book vary due to rounding off errors\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "first 3 permitted energy levels of electron are 37.63 eV 150.53 eV and 338.69 eV\n",
        "answers given in the book vary due to rounding off errors\n"
       ]
      }
     ],
     "prompt_number": 30
    }
   ],
   "metadata": {}
  }
 ]
}