summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_P._V._Naik/Chapter11.ipynb
blob: 397628591554c0356459b54caa9f059ed39e5d75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
{
 "metadata": {
  "name": "",
  "signature": "sha256:1d5f4970753c62d94a2bd202867cc0f79046f1baac4b1a42721a5ae6844ad5f4"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "11: Nuclear Radiations and Detectors"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.1, Page number 227"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "r0=1.2;              #radius(fm)\n",
      "A=7;                 #mass number \n",
      "\n",
      "#Calculation                        \n",
      "r=r0*A**(1/3);\t     #radius of Li(fm) \n",
      "\n",
      "#Result\n",
      "print \"The radius of Li is\",round(r,4),\"fm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The radius of Li is 2.2955 fm\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.2, Page number 227"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "M=235.043945;         #atomic mass of uranium(u)\n",
      "Z=92;                 #atomic number of uranium\n",
      "mp=1.007825;          #mass of proton(kg)\n",
      "N=143;                #no.of neutrons\n",
      "mn=1.008665;          #mass of neutron(kg)\n",
      "A=235;                #number of nucleons\n",
      "\n",
      "#Calculation                        \n",
      "B=(((Z*mp)+(N*mn)-(M))/A)*931.5;            #Binding energy(MeV)\n",
      "\n",
      "#Result\n",
      "print \"The binding energy per nucleon is\",round(B,3),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The binding energy per nucleon is 7.591 MeV\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.3, Page number 227"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "#After removing one neutron from Ca(A=43;Z=20) it becomes Ca(A=42;Z=20)\n",
      "M=41.958622;             #mass of Ca(A=42;Z=20)(kg)\n",
      "mn=1.008665;             #mass of neutron(kg)\n",
      "E=42.95877;              #mass of Ca(A=43;Z=20)(kg)\n",
      "\n",
      "#Calculation                        \n",
      "C=M+mn;\n",
      "D=C-E;\n",
      "B=D*931.5;               #Binding energy of neutron(MeV)\n",
      "\n",
      "#Result\n",
      "print \"The binding energy of neutron is\",round(B,4),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The binding energy of neutron is 7.9336 MeV\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.4, Page number 227"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "mBe=9.012182;            #Atomic mass of beryllium(u)\n",
      "mHe=4.002603;            #Atomic mass of helium\n",
      "mn=1.008665;             #mass of neutron(kg)\n",
      "mC=12.000000;            #Atomic mass of carbon\n",
      "\n",
      "#Calculation                        \n",
      "Q=(mBe+mHe-mn-mC)*931.5        #energy balance of the reaction(MeV)\n",
      "\n",
      "#Result\n",
      "print \"The Q-value is\",round(Q,1),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Q-value is 5.7 MeV\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.5, Page number 227"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "mLi=7.016004;              #mass of Lithium(A=7)(u)\n",
      "mH=1.007825;               #mass of Hydrogen(A=1)(u)\n",
      "mHe=4.002603;              #mass of helium(A=4)(u)\n",
      "p=0.5;                       #energy of proton(MeV)\n",
      "\n",
      "#Calculation                        \n",
      "Q=(mLi+mH-2*(mHe))*931.5     #energy balance of the reaction(MeV)\n",
      "#The energy of 2 alpha particles is equal to the Q-value + energy of proton.\n",
      "Ealpha=(Q+p)/2;              #energy of each alpha particle(MeV)\n",
      "\n",
      "#Result\n",
      "print \"The Q-value of the reaction is\",round(Q,2),\"MeV\"\n",
      "print \"The energy of each alpha particle is\",round(Ealpha,3),\"MeV\"\n",
      "print \"answer for energy in the book varies due to rounding off errors\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Q-value of the reaction is 17.35 MeV\n",
        "The energy of each alpha particle is 8.924 MeV\n",
        "answer for energy in the book varies due to rounding off errors\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.6, Page number 228"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "wt=1000;            #weight(gm)\n",
      "A=235;              #mass number of uranium\n",
      "N=(6.02*10**23/A)*wt;         #no.of nuclei in 1kg of uranium\n",
      "Q=208;                          #energy-balance of the reaction\n",
      "\n",
      "#Calculation                        \n",
      "E=N*Q;                          #Energy released(MeV)\n",
      "#1MeV=4.45*10^-20kWh\n",
      "E=E*4.45*10**-20;\n",
      "\n",
      "#Result\n",
      "print \"The energy released is\",round(E/10**7,3),\"*10**7 kWh\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The energy released is 2.371 *10**7 kWh\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.7, Page number 228"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "wt=5000;                   #weight(gm)\n",
      "A=235;                     #mass number of uranium\n",
      "Ef=208;                    #Energy released per fission(MeV)\n",
      "\n",
      "#Calculation                        \n",
      "N=(6.02*10**23/A)*wt;      #number of nuclei in 5 Kg\n",
      "E=N*Ef;                    #Energy(MeV)\n",
      "E=E*1.6*10**-13;           #Energy(J)\n",
      "T=24*60*60;                #time\n",
      "P=E/T;                     #power(MW)\n",
      "\n",
      "#Result\n",
      "print \"The power output of a nuclear reactor is\",round(P/10**6),\"MW\"\n",
      "print \"answer given in the book is wrong\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The power output of a nuclear reactor is 4934.0 MW\n",
        "answer given in the book is wrong\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.8, Page number 228"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "A=235;                  #mass number of uranium\n",
      "p=1000;                 #amount of electric power produced(MW)\n",
      "e=0.32;                 #energy conversion efficiency of the plant\n",
      "f=200;                  #fission energy per event(MeV)\n",
      "\n",
      "#Calculation                        \n",
      "I=p/e;                  #Input nuclear energy(MW)\n",
      "TE=I*(10**6)*3600*24*365;           #total energy(J)\n",
      "EF=f*(10**6)*1.6*10**-19;           #Energy released per fission event(J)\n",
      "N=TE/EF;                            #Number of nuclei required\n",
      "M=N*A/(6.02*10**23);       #corresponding mass(g)\n",
      "\n",
      "#Result\n",
      "print \"The amount of uranium required is\",round(M*10**-3,1),\"kg\"\n",
      "print \"answer in the book varies due to rounding off errors\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The amount of uranium required is 1202.2 kg\n",
        "answer in the book varies due to rounding off errors\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.9, Page number 229"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "q=1.6*10**-19;                  #charge of the particle(c)\n",
      "B=1;                            #magnetic field(T)\n",
      "m=1.67*10**-27;                 #mass of proton(kg)\n",
      "r=0.5;                              #radius(m)\n",
      "\n",
      "#Calculation                        \n",
      "omega=(q*B)/m;                  #angular frequency(radian/s)\n",
      "v=(omega/(2*math.pi))*10**-8;           #frequency(MHz)\n",
      "s=omega*r;                          #speed of proton(m/s)\n",
      "K=(m*(s**2))*(1/2)*6.27*10**12;     #kinetic energy of protons emerging from cyclotron(MeV)\n",
      "\n",
      "#Result\n",
      "print \"The frequency of oscillator to accelerate protons is\",round(omega/10**8,2),\"*10**8 radian/s\"\n",
      "print \"The speed of proton is\",round(s/10**7,1),\"*10**7 m/s\"\n",
      "print \"The kinetic energy of protons emerging from the cyclotron is\",int(K),\"MeV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The frequency of oscillator to accelerate protons is 0.96 *10**8 radian/s\n",
        "The speed of proton is 4.8 *10**7 m/s\n",
        "The kinetic energy of protons emerging from the cyclotron is 12 MeV\n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.10, Page number 229"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "rho=1.83*10**17;                     #average density of carbon nucleus(kg/m^3)\n",
      "m=12;                                #mass(u)\n",
      "e=1.66*10**-27;\n",
      "\n",
      "#Calculation                        \n",
      "r=(m*e/((4/3)*math.pi*rho))**(1/3)*10**15;         #radius(fm)\n",
      "\n",
      "#Result\n",
      "print \"The radius is\",round(r,2),\"fm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The radius is 2.96 fm\n"
       ]
      }
     ],
     "prompt_number": 30
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.11, Page number 229"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "q=1.6*10**-19;              #charge of the particle(c)\n",
      "B=5;                        #magnetic field(T)\n",
      "m=9.1*10**-31;              #mass of electron(kg)\n",
      "\n",
      "#Calculation                        \n",
      "v=(q*B)/(2*math.pi*m);      #cyclotron frequency(Hz)\n",
      "\n",
      "#Result\n",
      "print \"cyclotron frequency of electron is\",round(v/10**11,1),\"*10**11 Hz\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "cyclotron frequency of electron is 1.4 *10**11 Hz\n"
       ]
      }
     ],
     "prompt_number": 32
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.12, Page number 229"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "k=1.5;                           #maximum kinetic energy(MeV)\n",
      "m=1.67*10**-27;                  #mass of proton(kg)\n",
      "q=1.6*10**-19;                   #charge of particle(c)\n",
      "r=0.35;                          #radius(m)\n",
      "\n",
      "#Calculation                        \n",
      "B=math.sqrt(k*10**6*q*2*m)/(q*r);           #magnetic field(T)\n",
      "\n",
      "#Result\n",
      "print \"The mgnetic field is\",round(B,1),\"T\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The mgnetic field is 0.5 T\n"
       ]
      }
     ],
     "prompt_number": 34
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.13, Page number 229"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m=1.67*10**-27;                       #mass of proton(kg)\n",
      "q=1.6*10**-19;                        #charge of particle(q)\n",
      "v=25;                                 #cyclotron frequency(MHz)\n",
      "\n",
      "#Calculation                        \n",
      "B=(v*10**6*2*math.pi*m)/q;          #magnetic field(T)\n",
      "\n",
      "#Result\n",
      "print \"The required magnetic field is\",round(B,4),\"T\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The required magnetic field is 1.6395 T\n"
       ]
      }
     ],
     "prompt_number": 37
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example number 11.14, Page number 229"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#importing modules\n",
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "v=20;                 #cyclotron frequency(MHz)\n",
      "B=1.3;                #magnetic field(T)\n",
      "\n",
      "#Calculation                        \n",
      "d=2*math.pi*v*10**6/B;           #charge to mass ratio of proton(C/kg)\n",
      "\n",
      "#Result\n",
      "print \"charge to mass ratio of proton is\",round(d/10**6,2),\"*10**6 C/kg\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "charge to mass ratio of proton is 96.66 *10**6 C/kg\n"
       ]
      }
     ],
     "prompt_number": 39
    }
   ],
   "metadata": {}
  }
 ]
}