1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#7: Band Theory of Solids"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 7.1, Page number 7.5"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"density of electrons is 5.86 *10**28\n",
"mobility of electrons is 0.725 *10**-2 m**2 V-1 s-1\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"rho_s=10.5*10**3; #density(kg/m**3)\n",
"NA=6.02*10**26; #avagadro number(per k mol)\n",
"MA=107.9; #atomic mass\n",
"sigma=6.8*10**7; #conductance(ohm-1 m-1)\n",
"e=1.6*10**-19; #charge(coulomb)\n",
"\n",
"#Calculation\n",
"n=rho_s*NA/MA; #density of electrons\n",
"mew=sigma/(n*e); #mobility of electrons(m**2/Vs)\n",
"\n",
"#Result\n",
"print \"density of electrons is\",round(n/10**28,2),\"*10**28\"\n",
"print \"mobility of electrons is\",round(mew*10**2,3),\"*10**-2 m**2 V-1 s-1\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 7.2, Page number 7.6"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mobility of electrons is 0.427 *10**-2 m V-1 s-1\n",
"average time of collision is 2.43 *10**-14 s\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"d=8.92*10**3; #density(kg/m**3)\n",
"rho=1.73*10**-8; #resistivity of copper(ohm m)\n",
"NA=6.02*10**26; #avagadro number(per k mol)\n",
"Aw=63.5; #atomic weight\n",
"m=9.1*10**-31; #mass(kg)\n",
"e=1.6*10**-19; #charge(coulomb)\n",
"\n",
"#Calculation\n",
"n=d*NA/Aw; #density of electrons\n",
"mew=1/(rho*n*e); #mobility of electrons(m**2/Vs)\n",
"t=m/(n*e**2*rho); #average time of collision(s)\n",
"\n",
"#Result\n",
"print \"mobility of electrons is\",round(mew*10**2,3),\"*10**-2 m V-1 s-1\"\n",
"print \"average time of collision is\",round(t*10**14,2),\"*10**-14 s\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 7.3, Page number 7.7"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"relaxation time of conduction electrons is 3.97 *10**-14 s\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"P=1.54*10**-8; #resistance(ohm m)\n",
"n=5.8*10**28; #number of electrons(per m**3)\n",
"m=9.108*10**-31; #mass(kg)\n",
"e=1.602*10**-19; #charge(coulomb)\n",
"\n",
"#Calculation\n",
"t=m/(n*e**2*P); #relaxation time of conduction electrons(s) \n",
"\n",
"#Result\n",
"print \"relaxation time of conduction electrons is\",round(t*10**14,2),\"*10**-14 s\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 7.4, Page number 7.8"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"free electron concentration is 1.8088 *10**29 electrons/m**2\n",
"mobility is 1.278 *10**-3 m s-1 V-1\n",
"drift velocity of electrons is 0.23 *10**-3 m s-1\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"R=0.06; #resistance(ohm)\n",
"I=15; #current(A)\n",
"D=5; #length(m)\n",
"MA=26.98; #atomic mass\n",
"rho_s=2.7*10**3; #density(kg/m**3)\n",
"NA=6.025*10**26; #avagadro number(per k mol)\n",
"e=1.602*10**-19; #charge(coulomb)\n",
"\n",
"#Calculation\n",
"n=3*rho_s*NA/MA; #free electron concentration(electrons/m**2)\n",
"mew=1/(n*e*rho_s*10**-11); #mobility(m s-1 V-1)\n",
"E=I*R/D; #electric field(V/m)\n",
"vd=mew*E; #drift velocity of electrons(m/s)\n",
"\n",
"#Result\n",
"print \"free electron concentration is\",round(n/10**29,4),\"*10**29 electrons/m**2\"\n",
"print \"mobility is\",round(mew*10**3,3),\"*10**-3 m s-1 V-1\"\n",
"print \"drift velocity of electrons is\",round(vd*10**3,2),\"*10**-3 m s-1\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|