1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#12: Lasers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 12.1, Page number 12.5"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"relative population is 1.0764 *10**-30\n",
"answer given in the book is wrong\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"e=1.6*10**-19; #charge(coulomb)\n",
"h=6.6*10**-34; #planck's constant(J sec)\n",
"c=3*10**8; #velocity of light(m/sec)\n",
"lamda=6943*10**-10; #wavelength(m)\n",
"k=8.61*10**-5;\n",
"T=300; #temperature(K)\n",
"\n",
"#Calculation\n",
"dE=h*c/(e*lamda);\n",
"N2byN1=math.exp(-dE/(k*T)); #relative population\n",
"\n",
"#Result\n",
"print \"relative population is\",round(N2byN1*10**30,4),\"*10**-30\"\n",
"print \"answer given in the book is wrong\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 12.2, Page number 12.13"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"divergence is 1.0 milli radian\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"a1=4*10**-3; #diameter(m)\n",
"a2=6*10**-3; #diameter(m)\n",
"d1=1; #distance(m)\n",
"d2=2; #distance(m)\n",
"\n",
"#Calculation\n",
"theta=(a2-a1)/(2*(d2-d1)); #divergence(radian)\n",
"\n",
"#Result\n",
"print \"divergence is\",theta*10**3,\"milli radian\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##Example number 12.3, Page number 12.45"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"spot size is 0.867 micro m\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"s=1*10**-3; #size(m)\n",
"l=1*10**-3; #length(m)\n",
"lamda=650*10**-9; #wavelength(m)\n",
"\n",
"#Calculation\n",
"tantheta=(l/2)/s; \n",
"theta=math.atan(tantheta); #angle(radian)\n",
"sintheta=round(math.sin(theta),2);\n",
"ss=0.6*lamda/sintheta; #spot size(m)\n",
"\n",
"#Result\n",
"print \"spot size is\",round(ss*10**6,3),\"micro m\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|