1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 14: Dielectrics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.1, Page 475"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi\n",
"\n",
"#Variable declaration\n",
"er=1.0000684;#dielectric constant of helium \n",
"N=2.7*1e25;#atoms/m^3\n",
"\n",
"#Calculations\n",
"r=(er-1)/(4*pi*N);\n",
"R=r**(1./3); #radius of electron cloud\n",
"\n",
"#Result\n",
"print 'radius of electron cloud is %.1f*10^-10 m'%(R/1e-10)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"radius of electron cloud is 0.6*10^-10 m\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.2, Page 475"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"k=1.38*1e-23;#boltzmann constant\n",
"N=1e27;#HCL molecule per cubic meter\n",
"E=1e6;#electric field of vapour\n",
"D=3.33*1e-30;\n",
"\n",
"#Calculations\n",
"pHCL=1.04*D;\n",
"T=300;#tempreture in kelvin\n",
"alpha=(pHCL)**2/(3*k*T);\n",
"p0=N*alpha*E;#orientation polarization\n",
"\n",
"#Result\n",
"print 'orientation polarization is %.3f*10^-6 C/m^2'%(p0/1e-6)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"orientation polarization is 0.966*10^-6 C/m^2\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.3, Page 476"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"alpha=0.35*1e-40;#polarizability of gas\n",
"N=2.7*1e25;\n",
"e0=8.854*1e-12;#permittivity of vacume\n",
"\n",
"#Calculation\n",
"er=1+(N*alpha/e0);#relative permittivity\n",
"\n",
"#Result\n",
"print 'relative permittivity is %.6f'%er\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"relative permittivity is 1.000107\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.4, Page 480"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"er=12.;#relative permittivity\n",
"N=5*1e28;#atoms/m^3\n",
"e0=8.854*1e-12;#permittivity of vacume\n",
"\n",
"#Calculations\n",
"x=(er-1)/(er+2);\n",
"alpha=(3*e0/N)*x;#electrical polarizability\n",
"\n",
"#Result\n",
"print 'electronic polarizability = %.2f*10^-40 F*m^2'%(alpha/1e-40)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"electronic polarizability = 4.17*10^-40 F*m^2\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.5, Page 483"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import atan,degrees\n",
"\n",
"#Variable declaration\n",
"C=2.4*1e-12;#given capacitance in F\n",
"e0=8.854*1e-12;#permittivity of vacume\n",
"a=4*1e-4;#area in m^2\n",
"d=0.5*1e-2;#thickness\n",
"tandelta=0.02;\n",
"\n",
"#Calculations&Results\n",
"er=(C*d)/(e0*a);#relative permittivity\n",
"print 'relative permittivity = %.2f'%er\n",
"lf=er*tandelta;#loss factor\n",
"print 'electric loss factor = %.4f'%lf\n",
"delta=degrees(atan(tandelta))\n",
"PA=90-delta;#phase angle\n",
"print 'phase angle = %.2f degrees'%PA\n",
"#incorrect answers in the textbook\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"relative permittivity = 3.39\n",
"electric loss factor = 0.0678\n",
"phase angle = 88.85 degrees\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.6, Page 483"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"er=8.;#relative permittivity\n",
"a=0.036;#area in m^2\n",
"e0=8.854*1e-12;#permittivity of vacume\n",
"C=6*1e-6;#capacitance in F\n",
"V=15.0;#potential difference\n",
"\n",
"#Calculations\n",
"d=(e0*er*a)/C;\n",
"E=V/d;#field strength\n",
"\n",
"#Results\n",
"print 'field strength is= %.3f*10^7 V/m'%(E/1e+7)\n",
"dpm=e0*(er-1)*E;#dipole moment/unit volume\n",
"print 'dipole moment/unit volume= %.4f*10^-2 C/m^2'%(dpm/1e-2)\n",
"#Incorrect answers in the textbook\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"field strength is= 3.529*10^7 V/m\n",
"dipole moment/unit volume= 0.2187*10^-2 C/m^2\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|